骨科植入物无机抗菌涂层的研究现状
Research status of inorganic antibacterial coatings for orthopedic implants
查看参考文献142篇
文摘
|
植入物感染是骨科最常见和最严重的并发症之一,也是导致植入手术失败的重要原因。当细菌在植入物表面形成生物膜后会极难消除,并吸附更多的细菌和真菌。大量研究表明,通过采用表面改性技术可有效减少致病菌的黏附和聚积,进而预防植入物周围感染。本文首先分析了细菌生物膜在骨科植入物表面的形成过程以及金属抗菌剂的抗菌机制。然后综述了目前国内外使用最广泛的一些金属基无机抗菌涂层及其相关的制备工艺,讨论了这些涂层在应用中存在的问题和改善方法,并展望了未来无机抗菌涂层的发展方向,包括协同抗菌型涂层和促成骨型抗菌涂层等。 |
其他语种文摘
|
Implant infection is one of the most common and serious complications in orthopedics,and it is also an important reason for the failure of implant surgery.When bacteria form a biofilm on the implant surface,it is extremely difficult to be eliminated and attracts more bacteria and fungi.A large number of studies have shown that the use of surface modification technology can effectively reduce the adhesion and accumulation of pathogenic bacteria,thereby preventing peri-implant infection.The formation process of bacterial biofilm on the surface of orthopedic implants and the antibacterial mechanism of metal antibacterial agents were first analyzed.Then,some of the most widely used metal-based inorganic antibacterial coatings at home and abroad and their related preparation processes were reviewed,the problems and improvement methods in the application of these coatings were also discussed,and the development direction of inorganic antibacterial coatings in the future was prospected,such as synergistic antibacterial coatings and bone-promoting antibacterial coatings. |
来源
|
材料工程
,2023,51(9):13-27 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000938
|
关键词
|
骨科植入体
;
无机抗菌涂层
;
制备工艺
;
组织结构
;
生物相容性
;
银纳米颗粒
|
地址
|
1.
上海理工大学材料与化学学院, 上海, 200093
2.
上海长海医院, 上海, 200433
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7574265
|
参考文献 共
142
共8页
|
1.
行行查.
行业研究数据库,2020
|
CSCD被引
1
次
|
|
|
|
2.
Campoccia D. The significance of infection related to orthopedic devices and issues of antibiotic resistance.
Biomaterials,2006,27(11):2331-2339
|
CSCD被引
28
次
|
|
|
|
3.
Shekhawat D. Bioceramic composites for orthopaedic applications:a comprehensive review of mechanical,biological,and microstructural properties.
Ceramics International,2021,47(3):3013-3030
|
CSCD被引
3
次
|
|
|
|
4.
Darouiche R O. Current concepts-treatment of infections associated with surgical implants.
New England Journal of Medicine,2004,350(14):1422-1429
|
CSCD被引
68
次
|
|
|
|
5.
Kargupta R. Coatings and surface modifications imparting antimicrobial activity to orthopedic implants.
Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology,2014,6(5):475-495
|
CSCD被引
3
次
|
|
|
|
6.
Li B. Bacteria antibiotic resistance:new challenges and opportunities for implant-associated orthopedic infections.
Journal of Orthopaedic Research,2018,36(1):22-32
|
CSCD被引
11
次
|
|
|
|
7.
Lindsay D. Bacterial biofilms within the clinical setting:what healthcare professionals should know.
Journal of Hospital Infection,2006,64(4):313-325
|
CSCD被引
8
次
|
|
|
|
8.
Arciola C R. Biofilm formation in staphylococcusimplant infections.a review of molecular mechanisms and implications for biofilm-resistant materials.
Biomaterials,2012,33(26):5967-5982
|
CSCD被引
37
次
|
|
|
|
9.
Watnick P. Biofilm,city of microbes.
Journal of bacteriology,2000,182(10):2675-2679
|
CSCD被引
42
次
|
|
|
|
10.
An Y H. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces.
Journal of biomedical materials research,1998,43(3):338-348
|
CSCD被引
32
次
|
|
|
|
11.
Ferraris S. Antibacterial titanium surfaces for medical implants.
Materials Science and Engineering:C,2016,61:965-978
|
CSCD被引
20
次
|
|
|
|
12.
Bencina M. Use of plasma technologies for antibacterial surface properties of metals.
Molecules,2021,26(5):1418
|
CSCD被引
3
次
|
|
|
|
13.
Shiro H. The pathogenic role of staphylococcus epidermidis capsular polysaccharide/adhesin in a low-inoculum rabbit model of prosthetic valve endocarditis.
Circulation,1995,92(9):2715-2722
|
CSCD被引
1
次
|
|
|
|
14.
Campoccia D. A review of the biomaterials technologies for infection-resistant surfaces.
Biomaterials,2013,34(34):8533-8554
|
CSCD被引
41
次
|
|
|
|
15.
Romanoc L. Antibacterial coating of implants in orthopaedics and trauma:a classification proposal in an evolving panorama.
Journal of Orthopaedic Surgery and Research,2015,10(1):1-11
|
CSCD被引
6
次
|
|
|
|
16.
Koseoglu H. Ultrastructural stages of biofilm development of escherichia coli on urethral catheters and effects of antibiotics on biofilm formation.
Urology,2006,68(5):942-946
|
CSCD被引
3
次
|
|
|
|
17.
Wang L. The antimicrobial activity of nanoparticles: present situation and prospects for the future.
International Journal of Nanomedicine,2017,12:1227-1249
|
CSCD被引
26
次
|
|
|
|
18.
Mitra D. Antimicrobial copperbased materials and coatings:potential multifaceted biomedical applications.
ACS Applied Materials &Interfaces,2020,12(19):21159-21182
|
CSCD被引
5
次
|
|
|
|
19.
Gomaa E Z. Silver nanoparticles as an antimicrobial agent:a case study on staphylococcus aureus and escherichia coli as models for gram-positive and gram-negative bacteria.
The Journal of General and Applied Microbiology,2017,63(1):36-43
|
CSCD被引
5
次
|
|
|
|
20.
Slavin Y N. Metal nanoparticles: understanding the mechanisms behind antibacterial activity.
Journal of Nanobiotechnology,2017,15(1):65
|
CSCD被引
37
次
|
|
|
|
|