SiO_2气凝胶的制备、改性及其重金属离子吸附性能的研究进展
Research progress in SiO_2aerogel preparation, modification and adsorption performance of heavy metal ions
查看参考文献48篇
文摘
|
废水中重金属离子污染对人类健康造成了严重危害,吸附法因其高效经济、选择性好等优势备受关注。SiO_2气凝胶具有高比表面积(>500m~2/g)、高孔隙率(>80%)、可控的表面基团及稳定的物理化学性质等特点,是一种具有潜力的重金属离子吸附剂。本文首先简述了SiO_2气凝胶的制备及其对微观结构的影响研究进展,重点综述了SiO_2气凝胶官能化方法及其吸附废水中重金属离子的吸附性能和影响因素,并分析了其吸附机理和吸附动力学过程,指出了实现SiO_2气凝胶低成本短流程的可控制备、有效官能化及高效吸附多种重金属离子是未来的发展方向。 |
其他语种文摘
|
The pollution of heavy metal ions in wastewater has caused serious harm to human health, and the adsorption method has attracted much attention because of its high efficiency,economy, simplicity,and good selectivity.SiO_2aerogel is a potential adsorbent for removal of heavy metal ions in wastewater due to its high specific surface area(>500m~2/g),high porosity(>80%),controllable surface group and good physical/chemical stability.Herein,the preparation methods of SiO_2aerogel and its effect on microstructure were briefly introduced,focusing on the functionalization methods of SiO_2aerogel and the adsorption performance and factors of functionalized SiO_2 aerogel for the adsorption of heavy metal ions in wastewater,and the adsorption mechanism and adsorption kinetics process of functionalized SiO_2aerogel as heavy metal ions adsorbent were analyzed.It was pointed out that the controllable preparation with low cost and short process,effective functionalization and efficient adsorption of various heavy metal ions are the future development directions of SiO_2aerogels as absorbent. |
来源
|
材料工程
,2023,51(9):1-12 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000216
|
关键词
|
SiO_2气凝胶
;
重金属离子
;
制备方法
;
官能化
;
吸附等温模型
;
吸附动力学模型
|
地址
|
北京科技大学冶金与生态工程学院, 北京, 100083
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
化学 |
基金
|
国家自然科学基金联合基金项目
|
文献收藏号
|
CSCD:7574264
|
参考文献 共
48
共3页
|
1.
Ali H. Environmental chemistry and ecotoxicology of hazardous heavy metals:environmental persistence, toxicity,and bioaccumulation.
Journal of Chemistry,2019,2019:1-14
|
CSCD被引
24
次
|
|
|
|
2.
Arslan T E I. Assessment of heavy metal accumulations and health risk potentials in tomatoes grown in the discharge area of a municipal wastewater treatment plant.
International Journal of Environmental Health Research,2020,32(2):393-405
|
CSCD被引
1
次
|
|
|
|
3.
Vardhan K H. A review on heavy metal pollution,toxicity and remedial measures:current trends and future perspectives.
Journal of Molecular Liquids,2019,290:111197-111219
|
CSCD被引
34
次
|
|
|
|
4.
Hu H M. Efficient heterogeneous precipitation and separation of iron in copper-containing solution using dolomite.
Separation and Purification Technology,2020,248:117021-117025
|
CSCD被引
2
次
|
|
|
|
5.
Hargreaves A J. Coagulation-flocculation process with metal salts,synthetic polymers and biopolymers for the removal of trace metals(Cu,Pb,Ni,Zn) from municipal wastewater.
Clean Technologies and Environmental Policy,2018,20(2):393-402
|
CSCD被引
1
次
|
|
|
|
6.
Wang J Q. Evaluation of a novel polyamide-polyethylenimine nanofiltration membrane for wastewater treatment:removal of Cu2+ions.
Chemical Engineering Journal,2020,392:123769-123783
|
CSCD被引
8
次
|
|
|
|
7.
Ma A. Ion exchange homogeneous surface diffusion modelling by binary site resin for the removal of nickel ions from wastewater in fixed beds.
Chemical Engineering Journal,2019,358:1-10
|
CSCD被引
9
次
|
|
|
|
8.
Tamjidi S. A review of the application of sea material shells as low cost and effective bio-adsorbent for removal of heavy metals from wastewater.
Environmental science and pollution research international,2020,27(25):31105-31119
|
CSCD被引
5
次
|
|
|
|
9.
Chakraborty R. Adsorption of heavy metal ions by various low-cost adsorbents:a review.
International Journal of Environmental Analytical Chemistry,2020,102(2):342-379
|
CSCD被引
6
次
|
|
|
|
10.
Crini G. Conventional and non-conventional adsorbents for wastewater treatment.
Environmental Chemistry Letters,2019,17(1):195-213
|
CSCD被引
13
次
|
|
|
|
11.
Zhang D. Preparation of porous nano-calcium titanate microspheres and its adsorption behavior for heavy metal ion in water.
Journal of Hazardous Materials,2011,186(2/3):971-977
|
CSCD被引
4
次
|
|
|
|
12.
Wu Z. General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal.
Advanced Materials,2012,43(14):485-491
|
CSCD被引
3
次
|
|
|
|
13.
Maleki H. Recent advances in aerogels for environmental remediation applications.
Chemical Engineering Journal,2016,300:98-118
|
CSCD被引
40
次
|
|
|
|
14.
Dorcheh A S. Silica aerogel;synthesis,properties and characterization.
Journal of Materials Processing Technology,2008,199(1/3):10-26
|
CSCD被引
125
次
|
|
|
|
15.
Yu H J. Preparation and characterization of hydrophobic silica aerogel sphere products by coprecursor method.
Solid State Sciences,2015,48:155-162
|
CSCD被引
12
次
|
|
|
|
16.
Zhang J Y. Synthesis of hydrophobic silica aerogel and its composite using functional precursor.
Journal of Porous Materials Volume,2019,27(1):295-301
|
CSCD被引
4
次
|
|
|
|
17.
Mazraeh-Shahi Z T. Relationship analysis of processing parameters with micro and macro structure of silica aerogel dried at ambient pressure.
Journal of Non-Crystalline Solids,2013,376:30-37
|
CSCD被引
3
次
|
|
|
|
18.
Li Z. Preparation of ambient pressure dried MTMS/TEOS co-precursor silica aerogel by adjusting NH_4OH concentration.
Materials Letters,2014,129:12-15
|
CSCD被引
4
次
|
|
|
|
19.
Ziegler C. Modern inorganic aerogels.
Angewandte Chemie-International Edition,2017,56(43):13200-13221
|
CSCD被引
18
次
|
|
|
|
20.
Rao A P. Effect of solvent exchanging process on the preparation of the hydrophobic silica aerogels by ambient pressure drying method using sodium silicate precursor.
Journal of Materials Science,2007,42(20):8418-8425
|
CSCD被引
5
次
|
|
|
|
|