高温地质过程镍同位素地球化学研究进展
Research progresses on Ni isotope geochemistry during high-temperature geological processes
查看参考文献96篇
文摘
|
镍(Ni)具有独特的地球化学性质,其同位素在示踪早期地球的演化、大氧化事件、雪球地球、生物大灭绝、岩浆硫化物矿床成矿作用等方面显示出重要的潜力。本文系统综述了当前高温地质过程Ni同位素研究进展。已有研究初步查明了不同地质储库的Ni同位素变化范围。基于已发表的地幔橄榄岩、MORB、OIB和科马提岩的Ni同位素数据,估算全硅酸盐地球(Bulk Silicate Earth,BSE)的δ~(60) Ni_(BSE)均值为0.10‰±0.18‰(2SD,n = 179) 。根据上述已有的Ni同位素数据,并结合实验岩石学和模拟计算,发现:(1)核幔分异过程不会产生可分辨的Ni同位素分馏;(2)地幔部分熔融和玄武质岩浆结晶分异过程不会产生显著的Ni同位素分馏;(3)地幔的Ni同位素组成明显不均一,可能与地幔交代和再循环物质加入相关;(4)岩浆硫化物熔离和分离结晶可能是导致Ni同位素分馏的重要过程。本文最后介绍了最新的Ni同位素研究实例,并尝试指出研究中存在的科学问题和探讨未来的发展前景。 |
其他语种文摘
|
Ni is marked by unique geochemical featrues and its isotopes display a great potential for tracing the differentiation of the early Earth,the processes of the Great Oxidation Event,Snowball Earth,Mass Extinction,and the formation of magmatic sulfide ore deposits.Current research progresses on nickel isotope geochemistry during hightemperature geological processes are integrated in this study.The range of Ni isotopic variations in different types of igneous rocks has been obtained.On the basis of published data,the Ni isotopic composition of Bulk Silicate Earth(BSE),which is calculated from the average Ni isotope data of mantle peridotite,mid-ocean ridge basalts (MORBs),oceanic island basalts (OIBs),and komatiites,is estimated to be δ~(60) Ni_(BSE) = 0.10‰±0.18‰ (2SD,n = 179).Combining all Ni isotope data and experiment results,we suggest that:(1) no detectable Ni isotope fractionation occurs during coremantle differentiation;(2) very limited Ni isotope fractionation occurs during partial melting of the mantle and/or silicate magmatic differentiation;(3) the heterogeneous Ni isotopic compositions of the mantle may be caused by mantle metasomatism and/or addition of recycled crustal materials;(4) large Ni isotope fractionation may occur during sulfide segregation and fractional crystallization.We describe the latest cases for Ni isotope studies and propose their related scientific issues and the future prospects at the end of this study. |
来源
|
矿物岩石地球化学通报
,2023,42(4):914-930 【核心库】
|
DOI
|
10.19658/j.issn.1007-2802.2023.42.030
|
关键词
|
镍同位素
;
非传统稳定同位素
;
同位素质量分馏
;
地球化学示踪
;
研究进展
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
国家自然科学基金资助项目
;
中国科学院"西部之光"青年学者B类项目
|
文献收藏号
|
CSCD:7570930
|
参考文献 共
96
共5页
|
1.
Archer C. The oceanic biogeochemistry of nickel and its isotopes: New data from the South Atlantic and the Southern Ocean biogeochemical divide.
Earth and Planetary Science Letters,2020,535:116118
|
CSCD被引
3
次
|
|
|
|
2.
Arndt N T. Dynamic melting in plume heads: The formation of Gorgona komatiites and basalts.
Earth and Planetary Science Letters,1997,146(1/2):289-301
|
CSCD被引
8
次
|
|
|
|
3.
Asp K.
An investigation of Ni and Cu isotopic fractionation in basal Duluth Complex Cu-Ni-PGE mineralization, northeastern Minnesota. Master Thesis,2016:75-88
|
CSCD被引
1
次
|
|
|
|
4.
Benca J P. UV-B-induced forest sterility: Implications of ozone shield failure in Earth's largest extinction.
Science Advances,2018,4(2):e1700618
|
CSCD被引
1
次
|
|
|
|
5.
Beunon H. Innovative two-step isolation of Ni prior to stable isotope ratio measurements by MC-ICP-MS: Application to igneous geological reference materials.
Journal of Analytical Atomic Spectrometry,2020,35(10):2213-2223
|
CSCD被引
2
次
|
|
|
|
6.
Birck J L. Nickel and chromium isotopes in Allende inclusions.
Earth and Planetary Science Letters,1988,90(2):131-143
|
CSCD被引
2
次
|
|
|
|
7.
Budde G. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth.
Nature Astronomy,2019,3(8):736-741
|
CSCD被引
5
次
|
|
|
|
8.
Burgess S D. High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction.
Science Advances,2015,1(7):e1500470
|
CSCD被引
19
次
|
|
|
|
9.
Cameron V. A biomarker based on the stable isotopes of nickel.
Proceedings of the National Academy of Sciences of the United States of America,2009,106(27):10944-10948
|
CSCD被引
3
次
|
|
|
|
10.
Cameron V. Heavy nickel isotope compositions in rivers and the oceans.
Geochimica et Cosmochimica Acta,2014,128:195-211
|
CSCD被引
3
次
|
|
|
|
11.
Chen J H. A search for nickel isotopic anomalies in iron meteorites and chondrites.
Geochimica et Cosmochimica Acta,2009,73(5):1461-1471
|
CSCD被引
1
次
|
|
|
|
12.
Chernonozhkin S M. Development of an isolation procedure and MC-ICP-MS measurement protocol for the study of stable isotope ratio variations of nickel.
Journal of Analytical Atomic Spectrometry,2015,30(7):1518-1530
|
CSCD被引
1
次
|
|
|
|
13.
Ciscato E R. Nickel and its isotopes in organic-rich sediments: Implications for oceanic budgets and a potential record of ancient seawater.
Earth and Planetary Science Letters,2018,494:239-250
|
CSCD被引
3
次
|
|
|
|
14.
Clarkson M O. Ocean acidification and the Permo-Triassic mass extinction.
Science,2015,348(6231):229-232
|
CSCD被引
27
次
|
|
|
|
15.
Dauphas N. Magnesium and iron isotopes in 2.7 Ga Alexo komatiites: Mantle signatures, no evidence for Soret diffusion, and identification of diffusive transport in zoned olivine.
Geochimica et Cosmochimica Acta,2010,74(11):3274-3291
|
CSCD被引
15
次
|
|
|
|
16.
Elliott T. The isotope geochemistry of Ni.
Reviews in Mineralogy and Geochemistry,2017,82(1):511-542
|
CSCD被引
3
次
|
|
|
|
17.
Estrade N. Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania).
Earth and Planetary Science Letters,2015,423:24-35
|
CSCD被引
1
次
|
|
|
|
18.
Fielding C R. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis.
Nature Communications,2019,10(1):385
|
CSCD被引
6
次
|
|
|
|
19.
Fujii T. Theoretical and experimental investigation of nickel isotopic fractionation in species relevant to modern and ancient oceans.
Geochimica et Cosmochimica Acta,2011,75(2):469-482
|
CSCD被引
11
次
|
|
|
|
20.
Gall L.
Development and application of nickel stable isotopes as a new geochemical tracer. Doctoral Thesis,2011:108-132
|
CSCD被引
1
次
|
|
|
|
|