路径导引的四波横向剪切干涉波前重构方法
Quadri-Wave Lateral Shearing Interference Wavefront Reconstruction Based on Path Guidance
查看参考文献31篇
文摘
|
为了解决区域法在四波横向剪切干涉波前重构过程中噪声误差沿积分路径累积影响波前重构精度的问题,本文提出了一种路径导引的四波横向剪切干涉波前重构方法。首先分析了噪声环境下无积分路径导引的区域法波前重构存在噪声误差累积的缺陷,然后在此基础上建立了基于差分相位导数偏差的积分路径评价图模型,并给出了基于积分路径导引的波前重构算法流程。为了验证所提方法的有效性,本文进行了理论仿真研究,结果表明在不同信噪比噪声下所提方法能有效地阻止噪声误差的传播和累积。搭建了基于纯相位型液晶空间光调制器的实验验证装置,实验结果表明:所提方法重构波前与理论波前残差的RMS相比无积分路径导引区域法重构波前与理论波前残差的RMS降低了39.7%,且所提方法重构波前PV值与理论波前PV值的偏差相对无积分路径导引区域法重构波前PV值与理论波前PV值的偏差减小了1.6943λ。所提方法可为提高噪声环境下四波横向剪切干涉波前重构精度提供一种有效方法。 |
其他语种文摘
|
Objective The accuracy of a quadri-wave lateral shearing interferometer is directly affected by the accuracy of the wavefront reconstruction. Traditional wavefront-reconstruction methods include modal and zonal methods. The modal method expands the wavefront into a set of primary functions to be measured, then fits the coefficients corresponding to the primary functions to reconstruct the measured wavefront. The zonal method discretizes the measured wavefront to establish a mapping relationship between the measured and differential wavefronts for reconstruction. Alternatively, the wavefront can be reconstructed by direct integration in the shearing direction. However, the modal method always uses finite terms to fit the measured wavefront, which directly ignores high-frequency information, reducing the estimated accuracy of the quadri-wave lateral shearing interferometer. The zonal method has a high spatial resolution, but the noise error accumulates along the integrated path during the reconstruction process, forming noise lines, thus, affecting the accuracy of the reconstructed wavefront. To solve this problem, a quadri-wave lateral shearing interferometric wavefront reconstruction method is proposed based on path guidance, which has both high accuracy and spatial resolution. Methods In this study, a theoretical analysis of the drawbacks of noise error accumulation in wavefront reconstruction using the zonal method without integral-path guidance under noisy environments is carried out. An integral-path evaluation-map model is established based on the deviation of differential phase derivatives, and a flowchart of the wavefront reconstruction algorithm is provided based on integral-path guidance. The proposed method consists of two steps. First, the evaluation model of the differentialphase- derivative deviation is used to count the variational characteristics of the differential phase, identify the noise error, and generate an integral path to avoid noise error. Second, the generated path is used to guide the wavefront reconstruction integral of the Southwell model. Using theoretical simulations, the proposed method could effectively prevent the propagation and accumulation of noise errors compared to the zonal method without integral-path guidance under noisy environments for different signal-to-noise ratios(SNRs). In addition, a verification device having a pure-phase liquid-crystal spatial light modulator(SLM)was set up to experimentally verify the effectiveness of the proposed method. The experimental results of the proposed method were also compared with those of the zonal method without integral-path guidance. Results and Discussions In the simulation, interferograms with a sinusoidal phase distribution are generated(Fig. 4). When the SNR increases from 10 dB to 50 dB, the root-mean-square(RMS)between the wavefront reconstructed by the zonal method without integral-path guidance and the theoretical wavefront decreases from 0.0152λ to 0.0094λ. However, the RMS between the wavefront reconstructed by the proposed method and the theoretical wavefront decreases from 0.0139λ to 0.0041λ. Moreover, the proposed method reduces the RMS of the reconstructed and theoretical wavefronts by a maximum of 55.6% compared to the zonal method without integral-path guidance(Fig. 7). Thus, the proposed method is more robust than the zonal method without integral-path guidance under the Gaussian noise environment with different SNRs(Fig. 6). In the experiment, we measure the random phase generated by the spatial light modulator using the proposed method and zonal method without integral-path guidance(Fig. 10). The results show that the PV value(peak-valley value)of the wavefront reconstructed by the proposed method is 0.7283λ, whereas that of the wavefront reconstructed by the zonal method without integral-path guidance is 2.966λ. |
来源
|
中国激光
,2023,50(18):1804003 【核心库】
|
DOI
|
10.3788/CJL221344
|
关键词
|
测量
;
波前重构
;
路径导引
;
四波横向剪切干涉
;
差分相位
|
地址
|
1.
中国科学院西安光学精密机械研究所先进光学仪器研究室, 陕西, 西安, 710119
2.
中国科学院大学, 北京, 100049
3.
西安市高功率激光测量技术与仪器重点实验室, 西安市高功率激光测量技术与仪器重点实验室, 陕西, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-7025 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
国家重点研发计划
;
陕西省重点研发计划
|
文献收藏号
|
CSCD:7563916
|
参考文献 共
31
共2页
|
1.
Velghe S. Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers.
Optics Letters,2005,30(3):245-247
|
CSCD被引
12
次
|
|
|
|
2.
岳秀梅. 可用于四波横向剪切干涉波前检测的随机编码混合光栅设计.
中国激光,2015,42(10):1008006
|
CSCD被引
3
次
|
|
|
|
3.
Li P. Comparison of processing speed of typical wavefront reconstruction methods for lateral shearing interferometry.
Applied Optics,2021,60(2):312-325
|
CSCD被引
2
次
|
|
|
|
4.
Ling T. Common-path and compact wavefront diagnosis system based on cross grating lateral shearing interferometer.
Applied Optics,2014,53(30):7144-7152
|
CSCD被引
5
次
|
|
|
|
5.
Ling T. General measurement of optical system aberrations with a continuously variable lateral shear ratio by a randomly encoded hybrid grating.
Applied Optics,2015,54(30):8913-8920
|
CSCD被引
4
次
|
|
|
|
6.
Bon P. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells.
Optics Express,2009,17(15):13080-13094
|
CSCD被引
15
次
|
|
|
|
7.
Bon P. Modeling quantitative phase image formation under tilted illuminations.
Optics Letters,2012,37(10):1718-1720
|
CSCD被引
1
次
|
|
|
|
8.
Wang J Y. Quadriwave gradient light inteference microscopy for lable-free thick sample imaging.
Optics Express,2021,29(25):41719-41730
|
CSCD被引
1
次
|
|
|
|
9.
Baffou G. Quantitative phase microscopy using quadriwave lateral shearing interferometry (QLSI): principle, terminology, algorithm and grating shadow description.
Journal of Physics D: Applied Physics,2021,54(29):294002
|
CSCD被引
5
次
|
|
|
|
10.
Dai F Z. Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry: comparisons of existing algorithms.
Applied Optics,2012,51(21):5028-5037
|
CSCD被引
13
次
|
|
|
|
11.
Bon P. Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination.
Optics Express,2014,22(7):8654-8671
|
CSCD被引
1
次
|
|
|
|
12.
Tian X. Simple algorithm for large-grid phase reconstruction of lateral-shearing interferometry.
Applied Optics,1995,34(31):7213-7220
|
CSCD被引
5
次
|
|
|
|
13.
Liu K. Wavefront reconstruction for multi-lateral shearing interferometry using difference Zernike polynomials fitting.
Optics and Lasers in Engineering,2018,106:75-81
|
CSCD被引
5
次
|
|
|
|
14.
Gu N T. Modal wavefront reconstruction for radial shearing interferometer with lateral shear.
Optics Letters,2011,36(18):3693-3695
|
CSCD被引
3
次
|
|
|
|
15.
Li J. Wavefront reconstruction for lateral shearing interferometry based on difference polynomial fitting.
Journal of Optics,2015,17(6):065401
|
CSCD被引
3
次
|
|
|
|
16.
Guo Y F. Two-dimensional wavefront reconstruction from lateral multi-shear interferograms.
Optics Express,2012,20(14):15723-15733
|
CSCD被引
2
次
|
|
|
|
17.
曾新. 大剪切量干涉的二维波前重建.
中国激光,2005,32(6):782-786
|
CSCD被引
3
次
|
|
|
|
18.
徐文东. 恢复横向剪切干涉原始波面的新方法.
中国激光,1999,26(11):982-986
|
CSCD被引
3
次
|
|
|
|
19.
赵冬娥. 基于剪切干涉的双涡旋光干涉图样特性研究.
激光与光电子学进展,2021,58(11):1108001
|
CSCD被引
3
次
|
|
|
|
20.
宋静威. 基于离焦型夏克-哈特曼传感器的定量相位成像技术.
光学学报,2021,41(9):0911002
|
CSCD被引
3
次
|
|
|
|
|