考虑攻击时间及空间角度约束的三维自适应滑模协同制导律设计
Three-dimensional Adaptive Sliding Mode Cooperative Guidance Law with Impact Time and Angle Constraints
查看参考文献26篇
文摘
|
面向三维场景下的多导弹协同攻击机动目标问题,基于固定时间稳定理论和自适应滑模控制理论,设计考虑时间及空间约束的分布式协同制导律。在弹目视线方向上,基于固定时间一致性理论提出一种改进型自适应鲁棒协同制导律,驱动弹群以期望的攻击时刻协同拦截机动目标,并避免滑模固有的抖振问题;考虑视线法向的空间约束,基于固定时间非奇异终端滑模控制理论设计一种鲁棒自适应滑模制导律,在实现终端碰撞角约束的同时避免弹群间碰撞。通过Lyapunov稳定性理论证明闭环系统的固定时间稳定性。仿真结果表明:所设计三维协同制导律可以有效控制多发导弹在期望攻击时刻同时打击机动目标,并以期望的终端角度攻击目标。 |
其他语种文摘
|
Aiming at the problem of three-dimensional multiple missiles intercepting a maneuvering target simultaneously, a three-dimensional distributed cooperative guidance law considering time and space constraints. The proposed guidance law is based on fixed-time stable theory and adaptive sliding mode theory. Along the light-of-sight (LOS) direction, an improved robust adaptive cooperative guidance law is presented based on fixed-time consensus, which can drive a group of missiles to attack maneuvering target at a desired impact time without inherent chattering of sliding mode control. Along the direction vertical to the line-of-sight, a robust adaptive guidance law is proposed based on nonsingular fixed-time terminal sliding mode technique, which can drive missiles attack target with desired impact angle and avoid collision between missiles. Through the Lyapunov stability theory, the fixed-time stability of closed-loop system is demonstrated. The simulation results show that the proposed approach can be implemented to intercept maneuvering targets with desired impact time and impact angle. |
来源
|
兵工学报
,2023,44(9):2778-2790 【核心库】
|
DOI
|
10.12382/bgxb.2022.1086
|
关键词
|
分布式协同制导
;
固定时间稳定理论
;
时间及空间角度约束
;
自适应滑模
;
机动目标
|
地址
|
1.
北京理工大学宇航学院, 北京, 100081
2.
北京理工大学中国-阿联酋智能无人系统"一带一路"联合实验室, 北京, 100081
3.
中国兵器科学研究院, 北京, 100089
4.
西北工业集团有限公司, 陕西, 西安, 710043
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
航空 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7558285
|
参考文献 共
26
共2页
|
1.
Jeon I S. Impact-time-control guidance law for anti-ship missiles.
IEEE Transactions on Control Systems Technology,2006,14(2):260-266
|
CSCD被引
169
次
|
|
|
|
2.
Lee J I. Guidance law to control impact time and angle.
IEEE Transactions on Aerospace and Electronic Systems,2007,43(1):301-310
|
CSCD被引
106
次
|
|
|
|
3.
Cho N. Modified pure proportional navigation guidance law for impact time control.
Journal of Guidance, Control, and Dynamics,2016,39(4):852-872
|
CSCD被引
27
次
|
|
|
|
4.
李斌. 基于最优误差动力学的时间角度控制制导律.
航空学报,2018,39(11):157-167
|
CSCD被引
4
次
|
|
|
|
5.
Jeon I S. Homing guidance law for cooperative attack of multiple missiles.
Journal of Guidance, Control, and Dynamics,2010,33(1):275-280
|
CSCD被引
128
次
|
|
|
|
6.
Zhou J L. Distributed guidance law design for cooperative simultaneous attacks with multiple missiles.
Journal of Guidance, Control, and Dynamics,2016,39(10):2439-2447
|
CSCD被引
39
次
|
|
|
|
7.
He S M. Consensus-based two-stage salvo attack guidance.
IEEE Transactions on Aerospace and Electronic Systems,2017,54(3):1555-1566
|
CSCD被引
12
次
|
|
|
|
8.
He S M. Three-dimensional salvo attack guidance considering communication delay.
Aerospace Science and Technology,2018,73:1-9
|
CSCD被引
13
次
|
|
|
|
9.
Chen Y D. Three-dimensional cooperative homing guidance law with field-of-view constraint.
Journal of Guidance, Control, and Dynamics,2020,43(2):389-397
|
CSCD被引
11
次
|
|
|
|
10.
Shaferman V. Cooperative optimal guidance laws for imposing a relative intercept angle.
Journal of Guidance, Control, and Dynamics,2015,38(8):1395-1408
|
CSCD被引
28
次
|
|
|
|
11.
Shaferman V. Cooperative differential games guidance laws for imposing a relative intercept angle.
Journal of Guidance, Control, and Dynamics,2017,40(10):2465-2480
|
CSCD被引
25
次
|
|
|
|
12.
Wang X X. Terminal angle constraint finite-time guidance law with input saturation and autopilot dynamics.
Journal of the Franklin Institute,2022,359(16):8687-8712
|
CSCD被引
2
次
|
|
|
|
13.
Wang X X. Terminal angle constrained time-varying sliding mode guidance law with autopilot dynamics and input saturation.
Asian Journal of Control,2022
|
CSCD被引
1
次
|
|
|
|
14.
Song J H. Three-dimensional cooperative guidance law for multiple missiles with finite-time convergence.
Aerospace Science and Technology,2017,67:193-205
|
CSCD被引
20
次
|
|
|
|
15.
王思卓. 考虑目标机动和落角约束的二阶滑模制导律.
兵工学报,2022,43(12):3048-3061
|
CSCD被引
5
次
|
|
|
|
16.
Wang X X. Three-dimensional terminal angle constraint finite-time dual-layer guidance law with autopilot dynamics.
Aerospace Science and Technology,2021,116:106818
|
CSCD被引
1
次
|
|
|
|
17.
Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems.
IEEE Transactions on Automatic Control,2011,57(8):2106-2110
|
CSCD被引
214
次
|
|
|
|
18.
Zuo Z Y. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems.
International Journal of Systems Science,2016,47(6):1366-1375
|
CSCD被引
53
次
|
|
|
|
19.
Dong W. Fixed-time terminal angle-constrained cooperative guidance law against maneuvering target.
IEEE Transactions on Aerospace and Electronic Systems,2021,58(2):1352-1366
|
CSCD被引
11
次
|
|
|
|
20.
Chen Z Y. Three-dimensional fixed-time robust cooperative guidance law for simultaneous attack with impact angle constraint.
Aerospace Science and Technology,2021,110:106523
|
CSCD被引
17
次
|
|
|
|
|