空间引力波探测综述与拟解决的科学问题
Review and Scientific Objectives of Spaceborne Gravitational Wave Detection Missions
查看参考文献98篇
文摘
|
空间引力波探测将为人类探索宇宙打开中低频段(0.1 mHz~1 Hz)引力波观测的新窗口,这个频段的引力波事件被认为具有更重要的天文学、宇宙学以及物理学意义。其典型的波源包括超大和中等质量黑洞双星的并合、极端和中等质量比黑洞双星的绕转、银河系内数以百万计的致密双星系统以及随机引力波背景等,为研究宇宙起源与演化、黑洞形成与结构、引力和时空本质、暗能量和暗物质属性等提供了全新的方法和手段。21世纪以来,欧美联合的LISA计划成功发射了技术验证卫星LISA探路者,目前LISA计划已进入工程实施阶段,中国太极计划和天琴计划也相继发射了技术实验卫星太极一号和天琴一号,标志着空间引力波探测进入了全新的发展阶段。本文主要概述近年来国内外发展态势,详细凝炼空间引力波探测与研究的科学目标和未来发展的重点领域,系统优化引力波天文学、引力波物理学以及引力波宇宙学等相关学科布局,重点阐述推进空间引力波探测与研究的重要意义和发展战略。 |
其他语种文摘
|
Spaceborne gravitational wave detection will open a new window for us to observe our universe by gravitational wave messenger in low frequency band (0.1 mHz to 1 Hz).It was believed the gravitational wave events in such frequencies have more significances in astronomy,cosmology and fundamental physics.The typical Sources include massive (intermediate) black hole mergers,extreme (intermediate) mass ration inspirals,galactic binaries and stochastic gravitational wave background.Those gravitational wave provide unique methods to study the origin and evolution of the universe,the formation and structure of the black hole,the nature of gravity and spacetime,dark matter,dark energy,etc.In recent years,the ESA-NASA joint mission LISA project had successfully launched its technology demonstration mission the LISA pathfinder and LISA had already enter phase B stage.The Chinese spaceborne gravitational wave missions such as Taiji and Tianqin also launched their technology verification satellites Taiji-1 and Tianqin-1.In this paper,we briefly introduce the recent domestic and international development trends on spaceborne gravitational wave detections,and refine in detail the scientific goals and key research fields in future development for the spaceborne gravitational wave detection and investigation.It is optimized systematically the gravitational wave astronomy and gravitational wave physics as well as gravitational wave cosmology and other relevant disciplinary layout.It is emphasized the importance and development strategy for promoting the spaceborne gravitational wave detection and research. |
来源
|
空间科学学报
,2023,43(4):589-599 【核心库】
|
DOI
|
10.11728/cjss2023.04.yg08
|
关键词
|
空间引力波探测和研究
;
发展动态
;
战略规划
|
地址
|
1.
中国科学院大学引力波宇宙太极实验室, 北京, 100190
2.
中国科学院大学国际理论物理中心(亚太地区), 北京, 100190
3.
国科大杭州高等研究院, 浙江省引力波精密测量重点实验室, 杭州, 310024
4.
中国科学院理论物理研究所, 北京, 100190
5.
中国科学院力学研究所, 北京, 100190
6.
中国科学院上海技术物理研究所, 上海, 200083
7.
中国科学院国家天文台, 北京, 100101
8.
中国科学院微小卫星创新研究院, 上海, 201204
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-6124 |
学科
|
地球物理学 |
基金
|
国家重点研发计划项目
;
国家自然科学基金
;
中国科学院战略性先导科技专项
|
文献收藏号
|
CSCD:7552458
|
参考文献 共
98
共5页
|
1.
LISA scientific collaboration.
LISA L3 mission proposal,2017
|
CSCD被引
1
次
|
|
|
|
2.
LISA scientific collaboration.
LISA Pre-Phase A Report,1998
|
CSCD被引
1
次
|
|
|
|
3.
LISA scientific collaboration.
NGO, Revealing a hidden Universe: opening a new chapter of discovery-Assessment Study Report,2011
|
CSCD被引
1
次
|
|
|
|
4.
LISA scientific collaboration.
L1 Mission Reformulation, NGO-New Gravitational Wave Observer-Technical programmatic review report,2012
|
CSCD被引
1
次
|
|
|
|
5.
Cesarsky C.
Report of the Senior Survey Committee on the selection of the science themes for the L2 and L3 launch opportunities in the cosmic vision programme,2013
|
CSCD被引
1
次
|
|
|
|
6.
Armano M. Sub-Femtog free fall for space-based gravitational wave observatories: LISA pathfinder results.
Physical Review Letters,2016,116(23):231101
|
CSCD被引
28
次
|
|
|
|
7.
Armano M. Beyond the required LISA free-fall performance: New LISA pathfinder results down to 20 μHz.
Physical Review Letters,2018,120(6):061101
|
CSCD被引
23
次
|
|
|
|
8.
Wanner G. Space-based gravitational wave detection and how LISA Pathfinder successfully paved the way.
Nature Physics,2019,15(3):200-202
|
CSCD被引
10
次
|
|
|
|
9.
Armano M. LISA pathfinder performance confirmed in an open-loop configuration: Results from the free-fall actuation mode.
Physical Review Letters,2019,123(11):111101
|
CSCD被引
3
次
|
|
|
|
10.
Armano M. Sensor noise in LISA Pathfinder: In-flight performance of the optical test mass readout.
Physical Review Letters,2021,126(13):131103
|
CSCD被引
6
次
|
|
|
|
11.
ESA.
LISA mission moves to final design phase,2022
|
CSCD被引
1
次
|
|
|
|
12.
Bender P L. Additional astrophysical objectives for LISA follow-on missions.
Classical and Quantum Gravity,2004,21(5):S1203-S1208
|
CSCD被引
12
次
|
|
|
|
13.
Bender P L. Possible LISA follow-on mission scientific objectives.
Classical and Quantum Gravity,2013,30(16):165017
|
CSCD被引
4
次
|
|
|
|
14.
Phinney S.
The Big Bang Observer: direct detection of gravitational waves from the birth of the Universe to the present. NASA Lewis Research Center: NASA Mission Concept Study,2004
|
CSCD被引
1
次
|
|
|
|
15.
Harry G M. Laser interferometry for the Big Bang Observer.
Classical and Quantum Gravity,2006,23(15):4887-4894
|
CSCD被引
9
次
|
|
|
|
16.
Cutler C. Big Bang Observer and the neutron-star-binary subtraction problem.
Physical Review D,2006,73(4):042001
|
CSCD被引
6
次
|
|
|
|
17.
Corbin V. Detecting the cosmic gravitational wave background with the Big Bang Observer.
Classical and Quantum Gravity,2006,23(7):2435-2446
|
CSCD被引
11
次
|
|
|
|
18.
Seto N. Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space.
Physical Review Letters,2001,87(22):221103
|
CSCD被引
17
次
|
|
|
|
19.
Kawamura S. The Japanese space gravitational wave antenna-DECIGO.
Classical and Quantum Gravity,2006,23(8):S125-S131
|
CSCD被引
16
次
|
|
|
|
20.
Kawamura S. The Japanese space gravitational wave antenna: DECIGO.
Classical and Quantum Gravity,2011,28(9):094011
|
CSCD被引
20
次
|
|
|
|
|