中药微调3号合剂对晚期胃癌免疫治疗临床疗效及肠道菌群的影响
Weidiao-3 Mixture Improves the Clinical Efficacy of Immunotherapy for Advanced Gastric Cancer by Regulating Intestinal Flora
查看参考文献27篇
文摘
|
目的探讨中药微调3号(WD-3)合剂对晚期胃癌免疫治疗患者的临床疗效及其对肠道菌群的影响。方法选取2020年1月至2021年12月无锡市中医医院肿瘤科收治的51例晚期胃癌免疫治疗患者,按入院时间顺序采用随机数字表法将患者分为WD-3组[免疫治疗+口服WD-3合剂(每日1剂) ](n = 25)和观察组(仅免疫治疗) (n = 26),另设10例健康体检者作为健康对照组。治疗前后进行体力状况Karnofsky评分、临床常见症状改善情况比较,治疗后比较客观疗效;治疗后收集受试者粪便,对患者粪便进行基于16SrRNA基因高通量测序粪便菌群及靶向代谢组学检测,比较分析肠道菌群的α、β多样性,菌落结构组成及短链脂肪酸含量。结果两组患者生活质量评分治疗后均优于治疗前,治疗后WD-3组优于观察组,差异有统计学意义(P = 0.035) 。WD-3组治疗后口干(P = 0.038)及味觉改变(P = 0.008)症状较治疗前改善,观察组治疗后反流症状(P = 0.001)及口干症状(P = 0.022)较治疗前好转;与观察组相比,治疗后WD-3组吞咽困难(P = 0.047) 、口干(P = 0.045)有改善,差异有统计学意义。WD-3组客观缓解率及疾病控制率均优于观察组,WD-3组中位无进展生存期、中位总生存期较观察组显著延长(P = 0.039,P = 0.043) 。WD-3组、观察组肠道菌群的α多样性指数,包括辛普森指数(P = 0.014,P = 0.021) 、香农指数(P = 0.007,P = 0.024) 、物种均一度(P = 0.009,P = 0.027) 、观察到的物种数(P = 0.032,P = 0.012)均显著低于健康对照组。观察组和WD-3组之间肠道菌群 α、β多样性差异无统计学意义(P均>0.05) 。在门水平上,与健康对照组相比,WD-3组和观察组的厚壁菌门丰度降低(P = 0.038,P = 0.042),变形杆菌门丰度升高(P = 0.016,P = 0.015),观察组放线菌门丰度低于健康对照组(P = 0.035), WD-3组的放线菌门则高于观察组(P = 0.046),差异有统计学意义;在属水平上,观察组双歧杆菌属和粪球菌属细菌丰度显著低于健康对照组,而WD-3组这两种菌属的丰度高于观察组,差异有统计学意义(P均< 0.001) 。对WD-3组和观察组进行LEfSe分析显示,有6种肠菌丰度存在差异,在属水平上,WD-3组与健康对照组相比,糖多孢菌属丰度升高且仅存在于WD-3组。对粪便中短链脂肪酸进行分析显示,WD-3组异丁酸和异戊酸含量较健康对照组均显著升高(P = 0.037, P = 0.004) 。结论WD-3合剂可能通过增加胃癌患者双歧杆菌属、粪球菌属细菌丰度,提高异丁酸和异戊酸含量,改变肠道微生态,进而实现对胃癌免疫治疗的增效作用。 |
其他语种文摘
|
Objective To investigate the effects of Weidiao-3 (WD-3) Mixture on the clinical efficacy of immunotherapy for advanced gastric cancer and the intestinal flora. Methods Fifty-one patients with advanced gastric cancer treated in Wuxi Traditional Chinese Medicine Hospital from January 2020 to December 2021 were randomized into a WD-3 group (immunotherapy + WD-3 Mixture,one dose per day) (n = 25) and a gastric cancer (GC) group (only immunotherapy) (n = 26) according to the admission time. Ten healthy volunteers were included as the healthy control group. The Karnofsky score and the Quality of Life Questionnare-Core score were evaluated before and after treatment,and the clinical efficacy was compared after treatment. After treatment,the stool samples were collected for 16SrRNA gene high-throughput sequencing and targeted metabolomics. The α and β diversity and structure of the intestinal flora and the content of short-chain fatty acids were compared between groups. Results The quality of life in both groups improved after treatment and was better in the WD-3 group than in the GC group (P = 0.035). The dry mouth (P = 0.038) and altered taste (P = 0.008) were mitigated in the WD-3 group after treatment,and the reflux (P = 0.001) and dry mouth (P = 0.022) were mitigated in the GC group after treatment. After treatment,the WD-3 group outperformed the GC group in terms of dysphagia (P = 0.047) and dry mouth (P = 0.045). The WD-3 group was superior to the GC group in terms of objective remission rate and disease control rate,with prolonged median progression-free survival and median overall survival (P = 0.039,P = 0.043). The α and β diversity indexes of the intestinal flora showed no significant differences between WD-3 and GC groups (all P > 0.05). At the phylum level, WD-3 and GC groups had lower relative abundance of Firmicutes (P = 0.038,P = 0.042) and higher relative abundance of Proteobacteria (P = 0.016,P =0.015) than the healthy control group. The relative abundance of Actinomycetes in the GC group was lower than that in the healthy control group (P =0.035) and the WD-3 group (P = 0.046). At the genus level,the GC group had lower relative abundance of Bifidobacteria and Coprococcus than the healthy control group and the WD-3 group (all P < 0.001). LEfSe revealed the differences in the relative abundance of 6 intestinal bacterial taxa between the WD-3 group and the GC group. At the genus level,Saccharopolyspora had higher relative abundance in the WD-3 group than in the healthy control group and only existed in the WD-3 group. The content of isobutyric acid and isovaleric acid in the WD-3 group was higher than that in the healthy control group (P = 0.037,P = 0.004). Conclusion WD-3 Mixture may increase the relative abundance of Bifidobacteria and Coprococcus and the content of isobutyric acid and isovaleric acid to alter the intestinal microecology,thereby improving the efficacy of immunotherapy for gastric cancer. |
来源
|
中国医学科学院学报
,2023,45(4):581-590 【核心库】
|
DOI
|
10.3881/j.issn.1000-503X.15496
|
关键词
|
晚期胃癌
;
中药
;
微调3号合剂
;
肠道菌群
;
生活质量
|
地址
|
南京中医药大学附属无锡中医医院肿瘤科, 江苏, 无锡, 214000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-503X |
学科
|
中国医学;肿瘤学 |
基金
|
国家自然科学基金
;
无锡中医药管理局科研项目
;
无锡市卫生健康委员会中青年高层次人才支持计划
|
文献收藏号
|
CSCD:7551647
|
参考文献 共
27
共2页
|
1.
Sung H. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin,2021,71(3):209-249
|
CSCD被引
5332
次
|
|
|
|
2.
郑荣寿. 2016年中国恶性肿瘤流行情况分析.
中华肿瘤杂志,2023,45(3):212-220
|
CSCD被引
134
次
|
|
|
|
3.
Li Y. Recent estimates and predictions of 5-year survival in patients with gastric cancer: a modelbased period analysis.
Cancer Control,2022,29(12)
|
CSCD被引
5
次
|
|
|
|
4.
Moehler M. Nivolumab (nivo) plus chemotherapy (chemo) versus chemo as first-line (1L) treatment for advanced gastric cancer/gastroesophageal junction cancer (GC/GEJC)/esophageal adenocarcinoma (EAC): first results of the CheckMate 649 study.
Ann Oncol,2020,31(4):S1191
|
CSCD被引
13
次
|
|
|
|
5.
马祥雪. 基于肠道菌群的中医健脾方剂作用机制的研究现状与思考.
中国实验方剂学杂志,2017,23(5):210-215
|
CSCD被引
44
次
|
|
|
|
6.
周留勇. 赵景芳“微调平衡治癌法”理论及临床运用探讨.
中国中医基础医学杂志,2016,22(1):90-92
|
CSCD被引
2
次
|
|
|
|
7.
黄箫娜. 微调三号方联合紫杉醇化疗方案治疗中晚期胃癌的临床研究.
辽宁中医药大学学报,2008,55(11):113-114
|
CSCD被引
1
次
|
|
|
|
8.
中华人民共和国卫生部医政司. 胃癌诊疗规范(2011年版).
中国医学前沿杂志(电子版),2012,4(5):62-71
|
CSCD被引
35
次
|
|
|
|
9.
中国临床肿瘤学会指南工作委员会.
中国临床肿瘤学会(CSCO)胃癌诊疗指南2020,2020
|
CSCD被引
2
次
|
|
|
|
10.
刘伟琳. EORTC QLQ-STO22量表对我国胃癌患者有效性的验证.
肿瘤研究与临床,2016,28(9):595-599
|
CSCD被引
2
次
|
|
|
|
11.
Eisenhauer E A. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).
Eur J Cancer,2009,45(2):228-247
|
CSCD被引
914
次
|
|
|
|
12.
Seymour L. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics.
Lancet Oncol,2017,18(3):E143-E152
|
CSCD被引
82
次
|
|
|
|
13.
彭颖. 脾虚证与肠道微生态.
世界华人消化杂志,2012,20(34):3287-3291
|
CSCD被引
21
次
|
|
|
|
14.
Sarhadi V. Gut microbiota of patients with different subtypes of gastric cancer and gastrointestinal stromal tumors.
Gut Pathog,2021,13(1):11
|
CSCD被引
1
次
|
|
|
|
15.
Reddy B S. Inhibitory effect of bifidobacterium longum on colon,mammary,and liver carcinogenesis induced by 2-amino-3-methylimidazo [4,5-f] quinoline,a food mutagen.
Cancer Res,1993,53(17):3914-3918
|
CSCD被引
16
次
|
|
|
|
16.
Sivan A. Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy.
Science,2015,350(6264):1084-1089
|
CSCD被引
195
次
|
|
|
|
17.
Cheng Y. The intestinal microbiota and colorectal cancer.
Front Immunol,2020,11(30):3100
|
CSCD被引
1
次
|
|
|
|
18.
Sayed A M. Saccharopolyspora: an underexplored source for bioactive natural products.
J Appl Microbiol,2020,128(2):314-329
|
CSCD被引
2
次
|
|
|
|
19.
Riquelme E. Tumor microbiome diversity and composition influence pancreatic cancer outcomes.
Cell,2019,178(4):795-806.e12
|
CSCD被引
54
次
|
|
|
|
20.
Ma J. The interaction among gut microbes, the intestinal barrier and short chain fatty acids.
Anim Nutr,2022,11(9):159-174
|
CSCD被引
21
次
|
|
|
|
|