Fixed-Time Controller Design for a Quadrotor UAV with Asymmetric Output Error Constraints
查看参考文献37篇
文摘
|
In this article, a fixed-time tracking control strategy is proposed for a quadrotor UAV (QUAV) with external disturbance and asymmetric output error constraints. Firstly, a dynamic model of the QUAV is transformed into a strict feedback system with external disturbance, and it is decoupled into attitude subsystem and position subsystem for simplifying controller design. Secondly, an asymmetric tangent barrier Lyapunov function (ATBLF) is applied to solve the tracking error constraints problem, and a fixed-time control law is designed. Meanwhile, a fixed-time disturbance observer (FTDO) is designed to cope with external disturbance. Then, it is proved that the designed controller guarantees the tracking error remains within the constraint ranges and converges to zero in fixed-time by Lyapunov stability theory. Finally, the effectiveness of the proposed control scheme is verified by numerical simulations. |
来源
|
Journal of Systems Science and Complexity
,2023,36(5):1981-2000 【核心库】
|
DOI
|
10.1007/s11424-023-1410-y
|
关键词
|
Asymmetric tangent barrier Lyapunov function (ATBLF)
;
fixed-time disturbance observer (FTDO)
;
output error constraints
;
quadrotor UAV (QUAV)
|
地址
|
1.
School of Science,Yanshan University, Qinhuangdao, 066004
2.
Ocean College,Hebei Agricultural University, Qinhuangdao, 066003
3.
School of Electric Engineering,Yanshan University, Qinhuangdao, 066004
4.
School of Electrical and Information Engineering,Tianjin University, Tianjin, 300072
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1009-6124 |
学科
|
自动化技术、计算机技术;航空 |
基金
|
supported by Science and Technology Project of Hebei Education Department
;
河北省自然科学基金
;
国家自然科学基金
;
Central Government Guided Local Science and Technology Development Fund Project
|
文献收藏号
|
CSCD:7551159
|
参考文献 共
37
共2页
|
1.
Tomic T. Toward a fully autonomous UAV: Research platform for indoor and outdoor urban search and rescue.
IEEE Robot. Autom. Mag,2012,19:46-56
|
CSCD被引
24
次
|
|
|
|
2.
Choutri K. A fully autonomous search and rescue system using quadrotor UAV.
Int. J. Com. Dig. Sys,2021,10(1):403-414
|
CSCD被引
1
次
|
|
|
|
3.
Wang B. A Composite Adaptive Fault-Tolerant Attitude Control for a Quadrotor UAV with Multiple Uncertainties.
Journal of Systems Science & Complexity,2022,35(1):81-104
|
CSCD被引
3
次
|
|
|
|
4.
Rosales C D. Neural adaptive PID control of a quadrotor using EFK.
Revista IEEE Amrica Latina,2018,16(11):2722-2730
|
CSCD被引
2
次
|
|
|
|
5.
Ghiglino P. Optimal quaternion tracking using attitude error linearization.
IEEE Trans. Aerosp. Electron. Syst,2015,51(4):2715-2731
|
CSCD被引
1
次
|
|
|
|
6.
Wang H B. Robust H_∞attitude tracking control of a quadrotor UAV on SO(3) via variation-based linearization and interval matrix approach.
ISA Trans,2019,87:10-16
|
CSCD被引
2
次
|
|
|
|
7.
Zhu J C. A gradient optimization based PID tuning approach on quadrotor.
Proceedings of the 27th Chinese Control and Decision Conference,2015
|
CSCD被引
1
次
|
|
|
|
8.
Bouabdallah S. PID vs LQ control techniques applied to an indoor micro quadrotor.
Proceeding of 2004 IEEE/RSJ International Conf. on Intelligent Robots and Systems,2004
|
CSCD被引
1
次
|
|
|
|
9.
Aleksandar D R. Dynamic inversion control of quadrotor with complementary fuzzy logic compensator.
11th Symposium on Neural Network Applications in Electrical Engineering,2012
|
CSCD被引
1
次
|
|
|
|
10.
Labbadi M. Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain quadrotor UAV subjected to disturbances.
ISA Trans,2019,99:290-304
|
CSCD被引
10
次
|
|
|
|
11.
Ghadiri H. Adaptive super-twisting non-singular terminal sliding mode control for tracking of quadrotor with bounded disturbances.
Aerosp. Sci. Technol,2021,112:106616
|
CSCD被引
6
次
|
|
|
|
12.
Labbadi M. Fractional-order global sliding mode controller for an uncertain quadrotor UAVs subjected to external disturbances.
J. Frankl. Inst,2021,358(9):4822-4847
|
CSCD被引
4
次
|
|
|
|
13.
Gong W Q. Fixed-time integral-type sliding mode control for the quadrotor UAV attitude stabilization under actuator failures.
Aerosp. Sci. Technol,2019,95:105444
|
CSCD被引
7
次
|
|
|
|
14.
Chen L L. Robust adaptive recursive sliding mode attitude control for a quadrotor with unknown disturbances.
ISA Trans,2022,122:114-125
|
CSCD被引
3
次
|
|
|
|
15.
Kahouadji M. Real-time attitude control of 3-DOF quadrotor UAV using modified Super Twisting algorithm.
J. Frankl. Inst,2020,357(5):2681-2695
|
CSCD被引
2
次
|
|
|
|
16.
Tian B L. Multivariable finite time attitude control for quadrotor UAV: Theory and experimentation.
IEEE Trans. Ind. Electron,2020,3(65):2567-2577
|
CSCD被引
1
次
|
|
|
|
17.
Tian B L. Adaptive finite-time attitude tracking of quadrotors with experiments and comparisons.
IEEE Trans. Ind. Electron,2019,12(66):9428-9438
|
CSCD被引
1
次
|
|
|
|
18.
Razmi H. Neural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAV.
Aerosp. Sci. Technol,2019,91:12-24
|
CSCD被引
14
次
|
|
|
|
19.
Hou Z W. Nonsingular terminal sliding mode control for a quadrotor UAV with a total rotor failure.
Aerosp. Sci. Technol,2020,95:105716
|
CSCD被引
9
次
|
|
|
|
20.
Eliker K. Finite-time adaptive integral backstepping fast terminal sliding mode control application on quadrotor UAV.
Int. J. Control Autom. Syst,2020,2(18):415-430
|
CSCD被引
1
次
|
|
|
|
|