Ramp Scheme Based on CRT for Polynomial Ring over Finite Field
查看参考文献26篇
文摘
|
Chinese Reminder Theorem (CRT) for integers has been widely used to construct secret sharing schemes for different scenarios,but these schemes have lower information rates than that of Lagrange interpolation-based schemes.In ASIACRYPT 2018,Ning,et al.constructed a perfect (r,n)-threshold scheme based on CRT for polynomial ring over finite field,and the corresponding information rate is one which is the greatest case for a (r,n)-threshold scheme.However,for many practical purposes,the information rate of Ning,et al.scheme is low and perfect security is too much security.In this work,the authors generalize the Ning,et al.(r,n)-threshold scheme to a (t,r,n)-ramp scheme based on CRT for polynomial ring over finite field,which attains the greatest information rate (r-t) for a (t,r,n)-ramp scheme.Moreover,for any given 2 ≤ r1
|
来源
|
Journal of Systems Science and Complexity
,2023,36(1):129-150 【核心库】
|
DOI
|
10.1007/s11424-022-1292-4
|
关键词
|
Chinese Reminder Theorem
;
polynomial ring
;
ramp scheme
;
threshold changeable secret sharing
|
地址
|
1.
College of Computer and Cyber Security,Fujian Normal University, Fuzhou, 350007
2.
School of Mathematics and Big Data,Chaohu Univeristy, Hefei, 238024
3.
School of Mathematics and Statistics,Fujian Normal University, Fujian Provincial Key Lab of Network Security and Cryptology, Fuzhou, 350007
4.
School of Physical and Mathematical Sciences,Nanyang Technological University, Singapore, Singapore, 639798
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1009-6124 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
福建省自然科学基金
;
University Natural Science Research Project of Anhui Province
;
the Singapore Ministry of Education
|
文献收藏号
|
CSCD:7551068
|
参考文献 共
26
共2页
|
1.
Blakley G R. Safeguarding cryptographic keys.
Proceedings of the National Computer Conference' 1979, AFIPS Proceedings. 48,1979:313-317
|
CSCD被引
1
次
|
|
|
|
2.
Shamir A. How to share a secret.
Communications of the ACM,1979,22(11):612-613
|
CSCD被引
1191
次
|
|
|
|
3.
Asmuth C. A modular approach to key safeguarding.
IEEE Trans. Inf. Theory,1983,29(2):208-210
|
CSCD被引
105
次
|
|
|
|
4.
Harn L. Weighted secret sharing based on the Chinese Remainder Theorem.
Int. Netw. Secur,2014,16(6):420-425
|
CSCD被引
1
次
|
|
|
|
5.
Harn L. Multilevel threshold secret sharing based on the Chinese Remainder Theorem.
Inf. Process. Lett,2014,114(9):504-509
|
CSCD被引
4
次
|
|
|
|
6.
Liu Y. A novel verifiable secret sharing mechanism using theory of numbers and a method for sharing secrets.
Int. J. Commun. Syst,2015,28(7):1282-1292
|
CSCD被引
1
次
|
|
|
|
7.
Blakley G R. Security of ramp schemes.
Advances in Cryptology-CRYPTO 1984, Lecture Notes in Computer Science. 196,1985:242-268
|
CSCD被引
1
次
|
|
|
|
8.
Huang W. Communication efficient secret sharing.
IEEE Trans. Inf. Theory,2016,62(12):7195-7206
|
CSCD被引
3
次
|
|
|
|
9.
Ning Y. Constructing ideal secret sharing schemes based on Chinese Remainder Theorem.
Advances in Cryptology-ASIACRYPT 2018, Lecture Notes in Computer Science. 11274,2018:310-331
|
CSCD被引
1
次
|
|
|
|
10.
Martin K M. Changing thresholds in the absence of secure channels.
Information Security and Privacy, ACISP 1999, Lecture Notes in Computer Science. 1587,1999:177-191
|
CSCD被引
1
次
|
|
|
|
11.
Wang H. On secret reconstruction in secret sharing schemes.
IEEE Trans. Inf. Theory,2008,54(1):473-480
|
CSCD被引
4
次
|
|
|
|
12.
Zhang Z. Threshold changeable secret sharing schemes revisited.
Theor. Compu. Sci,2012,418:106-115
|
CSCD被引
5
次
|
|
|
|
13.
Bitar R. Staircase codes for secret sharing with optimal communication and read overheads.
IEEE Trans. Inf. Theory,2018,64(6):4191-4206
|
CSCD被引
1
次
|
|
|
|
14.
Lin F. Threshold changeable ramp secret sharing.
Cryptology and Network Security, CANS 2019, Lecture Notes in Computer Science. 11829,2019:308-327
|
CSCD被引
1
次
|
|
|
|
15.
Steinfeld R. Lattice-based threshold-changeability for standard crt secret-sharing schemes.
Finite Fields Their Appl,2006,12(4):653-680
|
CSCD被引
3
次
|
|
|
|
16.
Steinfeld R. Lattice-based threshold changeability for standard shamir secret-sharing schemes.
IEEE Trans. Inf. Theory,2007,53(7):2542-2559
|
CSCD被引
5
次
|
|
|
|
17.
Ding J. Optimal threshold changeable secret sharing with new threshold change range.
ProvSec 2020, LNCS. 12505,2020:361-378
|
CSCD被引
1
次
|
|
|
|
18.
Harn L. Group authentication.
IEEE Trans. Comput,2013,62(9):1893-1898
|
CSCD被引
13
次
|
|
|
|
19.
Harn L. Secure secret reconstruction and multi-secret sharing schemes with unconditional security.
Security Comm. Networks,2014,7(3):567-573
|
CSCD被引
8
次
|
|
|
|
20.
Harn L. Dynamic threshold secret reconstruction and its application to the threshold cryptography.
Inf. Process. Lett,2015,115(11):851-857
|
CSCD被引
3
次
|
|
|
|
|