Curvature-Based r-Adaptive Isogeometric Analysis with Injectivity-Preserving Multi-Sided Domain Parameterization
查看参考文献38篇
文摘
|
Inspired by the r-refinement method in isogeometric analysis,in this paper,the authors propose a curvature-based r-adaptive isogeometric method for planar multi-sided computational domains parameterized by toric surface patches.The authors construct three absolute curvature metrics of isogeometric solution surface to characterize its gradient information,which is more straightforward and effective.The proposed method takes the internal weights as optimization variables and the resulting parameterization is analysis-suitable and injectivity-preserving with a theoretical guarantee.Several PDEs are solved over multi-sided computational domains parameterized by toric surface patches to demonstrate the effectiveness and efficiency of the proposed method. |
来源
|
Journal of Systems Science and Complexity
,2023,36(1):53-76 【核心库】
|
DOI
|
10.1007/s11424-022-1293-3
|
关键词
|
Isogeometric analysis
;
parameterization
;
r-adaptive
;
toric surface patches
|
地址
|
1.
School of Mathematical Sciences,Dalian University of Technology, Dalian, 116024
2.
Key Laboratory for Computational Mathematics and Data Intelligence of Liaoning Province, Key Laboratory for Computational Mathematics and Data Intelligence of Liaoning Province, Dalian, 116024
3.
School of Mathematics,Liaoning Normal University, Dalian, 116029
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1009-6124 |
学科
|
数学;自动化技术、计算机技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7551064
|
参考文献 共
38
共2页
|
1.
Hughes T J R. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.
Comput. Methods Appl. Mech. Engrg,2005,194(39/41):4135-4195
|
CSCD被引
270
次
|
|
|
|
2.
Cottrell J A.
Isogeometric Analysis: Toward Integration of CAD and FEA,2009
|
CSCD被引
33
次
|
|
|
|
3.
Cohen E. Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis.
Comput. Methods Appl. Mech. Engrg,2010,199(5/8):334-356
|
CSCD被引
12
次
|
|
|
|
4.
Xu G. Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis.
Computer-Aided Design,2013,45(4):812-821
|
CSCD被引
8
次
|
|
|
|
5.
Pilgerstorfer E. Bounding the influence of domain parameterization and knot spacing on numerical stability in isogeometric analysis.
Comput. Methods Appl. Mech. Engrg,2014,268:589-613
|
CSCD被引
5
次
|
|
|
|
6.
Nian X S. Planar domain parameterization for isogeometric analysis based on Teichmuller mapping.
Comput. Methods Appl. Mech. Engrg,2016,311:41-55
|
CSCD被引
6
次
|
|
|
|
7.
Pan M D. Low-rank parameterization of planar domains for isogeometric analysis.
Computer Aided Geometric Design,2018,63:1-16
|
CSCD被引
2
次
|
|
|
|
8.
Xu G. Parameterization of computational domain in isogeometric analysis: Methods and comparison.
Comput. Methods Appl. Mech. Engrg,2011,200(23/24):2021-2031
|
CSCD被引
26
次
|
|
|
|
9.
Huang W Z. Moving mesh strategy based on a gradient flow equation for two-dimensional problems.
SIAM J. Sci. Comput,1998,20(3):998-1015
|
CSCD被引
1
次
|
|
|
|
10.
Cao W M. An r-adaptive finite element method based upon moving mesh PDEs.
Journal of Computational Physics,1999,149(2):221-244
|
CSCD被引
9
次
|
|
|
|
11.
Huang W Z. Adaptive mesh movement-The MMPDE approach and its applications.
J. Comput. Appl. Math,2001,128(1/2):383-398
|
CSCD被引
3
次
|
|
|
|
12.
Huang W Z.
Adaptive Moving Mesh Methods,2011
|
CSCD被引
4
次
|
|
|
|
13.
Gravesen J. Planar parametrization in isogeometric analysis.
International Conference on Mathematical Methods for Curves and Surfaces,2012:189-212
|
CSCD被引
1
次
|
|
|
|
14.
Xu G. Efficient r-adaptive isogeometric analysis with Winslow's mapping and monitor function approach.
Journal of Computational and Applied Mathematics,2019,351:186-197
|
CSCD被引
4
次
|
|
|
|
15.
Ali Z. PDE-based and solution-dependent parameterization for isogeometric analysis, 14th World Congress on Computational Mechanics (WCCM XIV).
8th European Congress on Computational Methods in Applied Science and Engineering (ECCOMAS 2020),2021
|
CSCD被引
1
次
|
|
|
|
16.
Krasauskas R. Toric surface patches.
Advances in Computational Mathematics,2002,17(1):89-113
|
CSCD被引
12
次
|
|
|
|
17.
Li J G. De Casteljau Algorithm and Degree Elevation of Toric Surface Patches.
Journal of Systems Science and Complexity,2021,34(1):21-46
|
CSCD被引
3
次
|
|
|
|
18.
Yu Y Y. An improved algorithm for checking the injectivity of 2D toric surface patches.
Computers & Mathematics with Applications,2020,79(10):2973-2986
|
CSCD被引
4
次
|
|
|
|
19.
Zhu X F. Isogeometric analysis for trimmed CAD surfaces using multi-sided toric surface patches.
Computer Aided Geometric Design,2020,79:101847
|
CSCD被引
3
次
|
|
|
|
20.
Craciun G. Some geometrical aspects of control points for toric patches.
International Conference on Mathematical Methods for Curves and Surfaces,2008:111-135
|
CSCD被引
1
次
|
|
|
|
|