帮助 关于我们

返回检索结果

Curvature-Based r-Adaptive Isogeometric Analysis with Injectivity-Preserving Multi-Sided Domain Parameterization

查看参考文献38篇

Ji Ye 1,2   Wang Mengyun 1,2   Yu Yingying 3   Zhu Chungang 1,2 *  
文摘 Inspired by the r-refinement method in isogeometric analysis,in this paper,the authors propose a curvature-based r-adaptive isogeometric method for planar multi-sided computational domains parameterized by toric surface patches.The authors construct three absolute curvature metrics of isogeometric solution surface to characterize its gradient information,which is more straightforward and effective.The proposed method takes the internal weights as optimization variables and the resulting parameterization is analysis-suitable and injectivity-preserving with a theoretical guarantee.Several PDEs are solved over multi-sided computational domains parameterized by toric surface patches to demonstrate the effectiveness and efficiency of the proposed method.
来源 Journal of Systems Science and Complexity ,2023,36(1):53-76 【核心库】
DOI 10.1007/s11424-022-1293-3
关键词 Isogeometric analysis ; parameterization ; r-adaptive ; toric surface patches
地址

1. School of Mathematical Sciences,Dalian University of Technology, Dalian, 116024  

2. Key Laboratory for Computational Mathematics and Data Intelligence of Liaoning Province, Key Laboratory for Computational Mathematics and Data Intelligence of Liaoning Province, Dalian, 116024  

3. School of Mathematics,Liaoning Normal University, Dalian, 116029

语种 英文
文献类型 研究性论文
ISSN 1009-6124
学科 数学;自动化技术、计算机技术
基金 国家自然科学基金
文献收藏号 CSCD:7551064

参考文献 共 38 共2页

1.  Hughes T J R. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg,2005,194(39/41):4135-4195 CSCD被引 270    
2.  Cottrell J A. Isogeometric Analysis: Toward Integration of CAD and FEA,2009 CSCD被引 33    
3.  Cohen E. Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis. Comput. Methods Appl. Mech. Engrg,2010,199(5/8):334-356 CSCD被引 12    
4.  Xu G. Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis. Computer-Aided Design,2013,45(4):812-821 CSCD被引 8    
5.  Pilgerstorfer E. Bounding the influence of domain parameterization and knot spacing on numerical stability in isogeometric analysis. Comput. Methods Appl. Mech. Engrg,2014,268:589-613 CSCD被引 5    
6.  Nian X S. Planar domain parameterization for isogeometric analysis based on Teichmuller mapping. Comput. Methods Appl. Mech. Engrg,2016,311:41-55 CSCD被引 6    
7.  Pan M D. Low-rank parameterization of planar domains for isogeometric analysis. Computer Aided Geometric Design,2018,63:1-16 CSCD被引 2    
8.  Xu G. Parameterization of computational domain in isogeometric analysis: Methods and comparison. Comput. Methods Appl. Mech. Engrg,2011,200(23/24):2021-2031 CSCD被引 26    
9.  Huang W Z. Moving mesh strategy based on a gradient flow equation for two-dimensional problems. SIAM J. Sci. Comput,1998,20(3):998-1015 CSCD被引 1    
10.  Cao W M. An r-adaptive finite element method based upon moving mesh PDEs. Journal of Computational Physics,1999,149(2):221-244 CSCD被引 9    
11.  Huang W Z. Adaptive mesh movement-The MMPDE approach and its applications. J. Comput. Appl. Math,2001,128(1/2):383-398 CSCD被引 3    
12.  Huang W Z. Adaptive Moving Mesh Methods,2011 CSCD被引 4    
13.  Gravesen J. Planar parametrization in isogeometric analysis. International Conference on Mathematical Methods for Curves and Surfaces,2012:189-212 CSCD被引 1    
14.  Xu G. Efficient r-adaptive isogeometric analysis with Winslow's mapping and monitor function approach. Journal of Computational and Applied Mathematics,2019,351:186-197 CSCD被引 4    
15.  Ali Z. PDE-based and solution-dependent parameterization for isogeometric analysis, 14th World Congress on Computational Mechanics (WCCM XIV). 8th European Congress on Computational Methods in Applied Science and Engineering (ECCOMAS 2020),2021 CSCD被引 1    
16.  Krasauskas R. Toric surface patches. Advances in Computational Mathematics,2002,17(1):89-113 CSCD被引 12    
17.  Li J G. De Casteljau Algorithm and Degree Elevation of Toric Surface Patches. Journal of Systems Science and Complexity,2021,34(1):21-46 CSCD被引 3    
18.  Yu Y Y. An improved algorithm for checking the injectivity of 2D toric surface patches. Computers & Mathematics with Applications,2020,79(10):2973-2986 CSCD被引 4    
19.  Zhu X F. Isogeometric analysis for trimmed CAD surfaces using multi-sided toric surface patches. Computer Aided Geometric Design,2020,79:101847 CSCD被引 3    
20.  Craciun G. Some geometrical aspects of control points for toric patches. International Conference on Mathematical Methods for Curves and Surfaces,2008:111-135 CSCD被引 1    
引证文献 1

1 Chen Shaoshi Preface to the Special Topic on Computer Mathematics Journal of Systems Science and Complexity,2023,36(1):1-2
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号