帮助 关于我们

返回检索结果

Isogeometric Analysis-Based Topological Optimization for Heterogeneous Parametric Porous Structures

查看参考文献48篇

文摘 Porous structures widely exist in nature and artifacts,which can be exploited to reduce structural weight and material usage or improve damage tolerance and energy absorption.In this study,the authors develop an approach to design optimized porous structures with Triply Periodic Minimal Surfaces (TPMSs) in the framework of isogeometric analysis (IGA)-based topological optimization.In the developed method,by controlling the density distribution,the designed porous structures can achieve the optimal mechanical performance without increasing the usage of materials.First,the implicit functions of the TPMSs are adopted to design several types of porous elements parametrically.Second,to reduce the cost of computation,the authors propose an equivalent method to forecast the elastic modulus of these porous elements with different densities.Subsequently,the relationships of different porous elements between the elastic modulus and the relative density are constructed.Third,the IGA-based porous topological optimization is developed to obtain an optimal density distribution,which solves a volume constrained compliance minimization problem based on IGA.Finally,an optimum heterogeneous porous structure is generated based on the optimized density distribution.Experimental results demonstrate the effectiveness and efficiency of the proposed method.
来源 Journal of Systems Science and Complexity ,2023,36(1):29-52 【核心库】
DOI 10.1007/s11424-022-1290-6
关键词 B-spline solid ; heterogeneous porous structure ; isogeometric analysis ; topological optimization ; triply periodic minimal surface
地址

School of Mathematical Sciences,Zhejiang University, State Key Lab.of CAD&CG, Hangzhou, 310027

语种 英文
文献类型 研究性论文
ISSN 1009-6124
学科 一般工业技术
基金 国家自然科学基金 ;  the National Key R&D Plan of China
文献收藏号 CSCD:7551063

参考文献 共 48 共3页

1.  Elnasri I. Shock enhancement of cellular structures under impact loading: Part I experiments. Journal of the Mechanics and Physics of Solids,2007,55(12):2652-2671 CSCD被引 20    
2.  Andrews E W. The influence of cracks, notches and holes on the tensile strength of cellular solids. Acta Materialia,2001,49(15):2975-2979 CSCD被引 7    
3.  Ajdari A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures. International Journal of Solids & Structures,2011,48(3/4):506-516 CSCD被引 32    
4.  Wu S L. Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering: R: Reports,2014,80:1-36 CSCD被引 48    
5.  Chen Y Z. Metal-organic framework-derived porous materials for catalysis. Coordination Chemistry Reviews,2018,362:1-23 CSCD被引 61    
6.  Ajit P. Strategies for functionally graded lattice structures derived using topology optimisation for Additive Manufacturing. Additive Manufacturing,2018,19:81-94 CSCD被引 17    
7.  Cheah C M. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification. International Journal of Advanced Manufacturing Technology,2003,21(4):291-301 CSCD被引 12    
8.  Sun W. Computer-aided tissue engineering: Application to biomimetic modelling and design of tissue scaffolds. Biotechnology and Applied Biochemistry,2004,39(1):49-58 CSCD被引 7    
9.  Rajagopalan S. Schwarz meets Schwann: Design and fabrication of biomorphic tissue engineering scaffolds. Medical Image Analysis,2006,10(5):693-712 CSCD被引 12    
10.  Schroeder C. Computer-aided design of porous artifacts. Computer-Aided Design,2005,37(3):339-353 CSCD被引 6    
11.  Sogutlu S. Stochastic modeling of tissue engineering scaffolds with varying porosity levels. Computer-Aided Design and Applications,2007,4(5):661-670 CSCD被引 2    
12.  Kou X Y. A simple and effective geometric representation for irregular porous structure modeling. Computer-Aided Design,2010,42(10):930-941 CSCD被引 9    
13.  Li M. Design optimization of interconnected porous structures using extended triply periodic minimal surfaces. Journal of Computational Physics,2021,425:109909 CSCD被引 4    
14.  Yoo D J. Porous scaffold design using the distance field and triply periodic minimal surface models. Biomaterials,2011,32(31):7741-7754 CSCD被引 13    
15.  Yang N. Multi-morphology transition hybridization cad design of minimal surface porous structures for use in tissue engineering. Computer-Aided Design,2014,56:11-21 CSCD被引 13    
16.  Hu C F. Heterogeneous porous scaffold generation using trivariate B-spline solids and triply periodic minimal surfaces. Graphical Models,2021,115:101105 CSCD被引 4    
17.  Hughes T J R. Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering,2005,194(39):4135-4195 CSCD被引 270    
18.  Zhang Y J. Patient-specific vascular nurbs modeling for isogeometric analysis of blood flow. Computer Methods in Applied Mechanics and Engineering,2007,196(29):2943-2959 CSCD被引 16    
19.  Martin T. Volumetric parameterization and trivariate B-spline fitting using harmonic functions. Computer Aided Geometric Design,2009,26(6):648-664 CSCD被引 16    
20.  Chen L. Constructing volumetric parameterization based on directed graph simplification of l1 polycube structure from complex shapes. Computer Methods in Applied Mechanics and Engineering,2019,351:422-440 CSCD被引 5    
引证文献 1

1 Chen Shaoshi Preface to the Special Topic on Computer Mathematics Journal of Systems Science and Complexity,2023,36(1):1-2
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号