基于像差影响的星间角距修正方法
Correction Method of Inter Satellite Angular Distance Based on Aberration Effect
查看参考文献15篇
文摘
|
为了有效地提高星模拟器的精度,针对经典星间角距数学公式没有考虑光学系统像差影响的问题,提出了一种基于像差影响的星间角距修正方法,建立了相关的数学模型并推导了相应的数学公式。并以球幕投影的星模拟器平台为例进行分析和实验测试,结合所建立的星间角距数学模型,对各星点的方位角和俯仰角进行曲线拟合,得到像差影响的星点位置误差拟合曲线,从而完成星间角距修正。实验结果表明,修正前星间角距误差为27.56 ″,修正后星间角距误差为16.96 ″,相对于修正前减小了10.60 ″。本文方法为有效提高星模拟器的仿真精度提供了理论基础。 |
其他语种文摘
|
Star sensors are high-precision space attitude measurement devices used in astronomical navigation to obtain the attitude of space vehicles by observing the angular distance of stars. As a key technical parameter of star simulators, the angular distance between stars is an important indicator of their testing accuracy. It represents the angular position relationship between any two-star points, and its size depends on the position of each star point. As an important component of a star simulator, optical systems can cause changes in star position due to coma, field curvature, astigmatism, and distortion. These changes can lead to discrepancies between the calculated inter-star angular distance and the theoretical inter-star angular distance, thereby affecting the accuracy of the simulation. Therefore, studying the impact of optical system aberrations on the inter-star angular distance is an important guarantee for ensuring the high accuracy of the star simulator. In order to effectively improve the accuracy of the star simulator, this paper addresses the issue that the conventional mathematical formula for calculating the inter-star angular distance does not account for the impact of aberrations in optical systems. As a solution, a method for correcting the inter-star angular distance based on aberration influence is proposed in this study. The method involves establishing a relevant mathematical model and deriving the corresponding mathematical formula. Then, taking the star simulator platform of spherical screen projection as an example, analysis and experimental testing were conducted. The test results showed the following maximum impacts of various aberrations on the inter-star angular distance: -10.04 ″ for coma aberration, -13.07 ″ for field curvature, - 2.92 ″ for astigmatism, and 34.78 ″ for distortion. Considering the compensation of each aberration on inter-star angular distance, the maximum total error of the influence of aberration on inter-satellite angular distance is 16.53 ″. Combining the established mathematical model of inter-satellite angular distance, curve fitting is performed on the azimuth and elevation angles of each star point to obtain a fitting curve for the position error of the star point affected by aberration, thereby completing inter-satellite angular distance correction. The experimental results show that the inter-satellite angular distance error before correction is 27.56 ″, and the inter-satellite angular distance error after correction is 16.96 ″, which is reduced by 10.60 ″ compared to the before correction. The research and experimental verification of inter-satellite angular distance correction methods for aberration effects provide a theoretical basis for effectively improving the simulation accuracy of satellite simulators. |
来源
|
光子学报
,2023,52(7):0712001 【核心库】
|
DOI
|
10.3788/gzxb20235207.0712001
|
关键词
|
像差
;
星间角距
;
数学模型
;
曲线拟合
;
修正
|
地址
|
1.
中国科学院西安光学精密机械研究所, 西安, 710119
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
天文学 |
基金
|
中国科学院战略高技术创新基金
|
文献收藏号
|
CSCD:7549371
|
参考文献 共
15
共1页
|
1.
Zhao Hui. A strap-down inertial Navigation/Spectrum Red-Shift/Star Sensor(SINS/SRS/SS) autonomous integrated system for spacecraft navigation.
Sensors,2018,18(7):2039-2053
|
CSCD被引
2
次
|
|
|
|
2.
Li Gang. Research on partitioning algorithm based on dynamic star simulator guide star catalog.
IEEE Access,2021,15(99):1-7
|
CSCD被引
1
次
|
|
|
|
3.
Ji Jin. A method for calibrating thrust of satellite based on the attitude variety on-orbit.
IOP Conference Series: Materials Science and Engineering. 727(1),2020:012015-012021
|
CSCD被引
1
次
|
|
|
|
4.
陈启梦. 标定型星模拟器设计与关键参数测试.
长春理工大学学报(自然科学版),2017,40(4):41-44
|
CSCD被引
2
次
|
|
|
|
5.
李成浩. 高时空分辨率动态星模拟器设计.
光学精密工程,2020,28(3):515-525
|
CSCD被引
2
次
|
|
|
|
6.
李光茜.
动态星模拟器星图模拟关键技术研究,2019
|
CSCD被引
3
次
|
|
|
|
7.
Shi Qingshao. Semi-physical simulation system about remote sensing satellite attitude determination based on star sensor.
Science of Surveying and Mapping,2012,37(5):204-203
|
CSCD被引
1
次
|
|
|
|
8.
Chang Yong. Semi-physical simulation of the airborne InSAR based on rigorous geometric model and real navigation data.
IOP Conference Series: Earth and Environmental Science. 17(14),2014:1-6
|
CSCD被引
1
次
|
|
|
|
9.
孙高飞. 星敏感器地面标定设备的设计.
红外与激光工程,2013,42(10):2822-2827
|
CSCD被引
7
次
|
|
|
|
10.
李学夔. 利用星角距对星敏感器主距进行标定的新方法.
半导体光电,2009,30(5):755-762
|
CSCD被引
6
次
|
|
|
|
11.
陶雪.
高精度静态星模拟器研究,2013
|
CSCD被引
2
次
|
|
|
|
12.
张勇. 基于星像位置误差估计星敏感器姿态角偏差的方法.
电子科技,2019,32(10):43-47
|
CSCD被引
1
次
|
|
|
|
13.
邹阳阳. 基于畸变影响的动态星模拟器星点位置修正方法.
空间科学学报,2014,34(4):468-473
|
CSCD被引
5
次
|
|
|
|
14.
谭迪. 光学像差对星点质心定位误差的影响分析.
红外与激光工程,2017,46(2):0217004
|
CSCD被引
4
次
|
|
|
|
15.
袁旭沧.
光学设计,1983
|
CSCD被引
58
次
|
|
|
|
|