气氢/气氧催化着火机理研究
Catalytic Ignition Mechanism of Gaseous Hydrogen/Gaseous Oxygen
查看参考文献24篇
文摘
|
通过实验和数值模拟对气氢/气氧在蜂窝结构陶瓷载铂催化剂中的催化着火特性开展研究,分析了反应动力学和分子扩散对催化着火特性的影响.结果表明,气流速度和混合物组分共同决定催化反应的控制机理,气流速度或当量比较大时,催化着火由反应动力学控制;气流速度和当量比较小时,催化着火由分子扩散控制;气流速度和当量比适中时,存在一个过渡区,过渡区内催化着火由分子扩散和反应动力学共同控制,反应体系既可以达到较高温度又不会发生回火.敏感性分析表明,催化反应中关键的基元反应为氢和氧的吸附反应以及氢的脱附反应,气相反应中关键的基元反应为含有自由基O、H和OH的链式反应以及HO_2的生成反应. |
其他语种文摘
|
Catalytic ignition mechanism of gaseous hydrogen/gaseous oxygen in a cylindrically shaped honeycomb ceramic coated with platinum was investigated experimentally and numerically.The effects of reaction kinetics and molecular diffusion on catalytic ignition characteristics were analyzed.Results show that the control mechanism of the catalytic reaction is determined jointly by the flow velocity and the composition of the mixture.When the flow velocity or equivalent ratio is relatively large,the catalytic ignition is controlled by reaction kinetics.When the flow velocity and equivalent ratio are small,the catalytic ignition is controlled by molecular diffusion.When the flow velocity and equivalent ratio are moderate,there exists a transition zone in which the catalytic ignition is controlled by both molecular diffusion and reaction kinetics,and the reaction system can reach high temperatures without tempering.Sensitivity analysis shows that the key elementary reactions in catalytic reactions are the adsorption reactions of hydrogen and oxygen and the desorption reactions of hydrogen,and that the key elementary reactions in gaseous reactions are the chain reactions containing O,H,and OH radicals and the formation reactions of HO_2. |
来源
|
燃烧科学与技术
,2023,29(4):435-443 【核心库】
|
DOI
|
10.11715/rskxjs.R202305028
|
关键词
|
气氢/气氧
;
蜂窝型催化剂
;
机理分析
;
控制分区
;
敏感性分析
|
地址
|
1.
中国科学院力学研究所, 中国科学院微重力重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
3.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1006-8740 |
学科
|
化学 |
基金
|
中国科学院战略性先导科技专项
|
文献收藏号
|
CSCD:7541274
|
参考文献 共
24
共2页
|
1.
Li D. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers.
Nature Energy,2020,5(5):378-385
|
CSCD被引
12
次
|
|
|
|
2.
Jensen K. Warm-gas thruster development using gaseous hydrogen and oxygen with catalytic ignition.
36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,2000:2000-3163
|
CSCD被引
1
次
|
|
|
|
3.
Hashimoto Y. Studies of water-energy-cycle space propulsion system-experimental study.
43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2007:2007-5438
|
CSCD被引
1
次
|
|
|
|
4.
林震. 催化点火气氢气氧推力器试验研究.
推进技术,2012,33(6):897-901
|
CSCD被引
2
次
|
|
|
|
5.
Harmansa N E. Development of a satellite propulsion system based on water electrolysis.
International Journal of Energetic Materials and Chemical Propulsion,2019,18(3):185-199
|
CSCD被引
1
次
|
|
|
|
6.
攸兴杰. 微纳卫星水分解推进系统研究进展.
载人航天,2018,24(6):838-844
|
CSCD被引
2
次
|
|
|
|
7.
Appel C. An experimental and numerical investigation of turbulent catalytically stabilized channel flow combustion of hydrogen/air mixtures over platinum.
Proceedings of the Combustion Institute,2002,29(1):1031-1038
|
CSCD被引
2
次
|
|
|
|
8.
Pan Jianfeng. Combustion characteristic of premixed hydrogen/oxygen mixture in catalytic micro-combustor.
Transactions of the Chinese Society for Agricultural Machinery,2016,47(2):357-363
|
CSCD被引
1
次
|
|
|
|
9.
Yedala N. A 3D CFD study of homogeneous-catalytic combustion of hydrogen in a spiral microreactor.
Combustion and Flame,2019,206:441-450
|
CSCD被引
2
次
|
|
|
|
10.
Mento C A. Catalytic ignition of methane/hydrogen/oxygen mixtures for microthruster applications.
The 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2006:2006-4871
|
CSCD被引
1
次
|
|
|
|
11.
Papale W. A Water-based propulsion system for advanced spacecraft.
Space 2006,2006:2006-7240
|
CSCD被引
1
次
|
|
|
|
12.
Boyarko G A. Catalyzed combustion of hydrogen-oxygen in platinum tubes for micro-propulsion applications.
Proceedings of the Combustion Institute,2005,30(2):2481-2488
|
CSCD被引
13
次
|
|
|
|
13.
Amrousse R. Catalytic ignition of cold hydrogen/oxygen mixtures for space propulsion applications.
International Journal of Energetic Materials and Chemical Propulsion,2011,10(3):217-230
|
CSCD被引
1
次
|
|
|
|
14.
.
CHEMKIN-PRO Release 15112. Reaction Design,2012
|
CSCD被引
1
次
|
|
|
|
15.
Warnatz J.
Combustion: Physical and Chemical Fundamentals,Modelling and Simulation, Experiments, Pollutant Formation,2006
|
CSCD被引
1
次
|
|
|
|
16.
Deutschmann O. Numerical modeling of catalytic ignition.
Symposium(International)on Combustion,1996,26(1):1747-1754
|
CSCD被引
22
次
|
|
|
|
17.
Kothandaraman C P.
Fundamentals of Heat and Mass Trasnfer,2006
|
CSCD被引
1
次
|
|
|
|
18.
Hwang C H. Numerical investigation on combustion characteristics of methane in a hybrid catalytic combustor.
Fuel,2004,83:987-996
|
CSCD被引
2
次
|
|
|
|
19.
伍亨. 空间反应和入口速度对甲烷催化反应的影响.
清华大学学报,2005,45(5):670-672,676
|
CSCD被引
20
次
|
|
|
|
20.
Dogwiler U. Two-dimensional modelling for catalytically stabilized combustion of a lean methane-air mixture with elementary homogeneous and heterogeneous chemical reactions.
Combustion and Flame,1999,116(1/2):243-258
|
CSCD被引
8
次
|
|
|
|
|