高超声速尖锥边界层转捩实验研究
Experimental study on hypersonic cone boundary layer transition
查看参考文献36篇
文摘
|
高超声速边界层转捩对飞行器的气动布局及热防护等性能都至关重要。研究依托JF-12复现高超声速飞行条件激波风洞开展边界层转捩实验,实验模型为典型外形的大尺度圆锥(高3 m)。大尺度模型结合复现来流条件还原真实飞行中高超声速边界层转捩的物理过程。针对大尺度圆锥模型开展了关于单位雷诺数、马赫数对高超声速尖锥边界层转捩的影响研究。利用高精度同轴热电偶传感器和高频响脉动压力传感器分别测量高超声速边界层转捩过程中的壁面热流以及脉动压力。通过热流分布判断边界层转捩位置,对流态进行识别;通过壁面脉动压力分布关注边界层中不稳定波的演化。结果表明:随着来流马赫数的增加,转捩雷诺数增大,转捩位置推迟,转捩区长度变长。来流马赫数的增加,边界层内不稳定波演化处于更早期阶段,边界层转捩推迟。随着单位雷诺数的增加,转捩空间位置提前,转捩雷诺数减小,圆锥模型对单位雷诺数的变化敏感,转捩空间位置的变化比例远大于单位雷诺数本身的变化比例。单位雷诺数增长使得边界层内不稳定波向扰动演化后期发展,边界层失稳提前。 |
其他语种文摘
|
Hypersonic boundary layer transition is crucial for the thermal protection and aerodynamic layout of hypersonic vehicles.The research relies on the JF-12 hypersonic shock tunnel duplicating flight conditions to carry out hypersonic boundary layer transition experiments.The experimental models are large-scale cones (3 m in height) with typical simple configurations.The truest boundary layer transition evolution process is restored by reproducing the flow field closest to that during real flight and the model closest to the scale of the aircraft.For the large-scale cone models,the effects of unit Reynolds number and Mach number on the hypersonic boundary layer transition are studied.The high precision coaxial thermocouple sensor and the high-frequency fluctuating pressure sensor are used to measure the wall heat transfer and pressure pulsation during the hypersonic boundary layer transition,respectively.The boundary layer transition position is judged by the wall heat transfer distribution,and the boundary layer flow regime is identified.Focus on the instability waves evolution in the boundary layer through the wall fluctuating pressure distribution.The results show that:With the increase of the Mach number,the transition Reynolds number increases,the transition position is delayed,and the length of the transition zone becomes longer.The Mach number makes instability wave in the conical boundary layer develops to the early evolution stage,which leads to the slowdown of the boundary layer destabilization and the delayed transition.With the increase of the unit Reynolds number,the transition spatial position advances,and the transition Reynolds number decreases.The cone model is sensitive to the change of the unit Reynolds number,and the change ration of the transition position is much larger than the change in the unit Reynolds number itself.The increase of the unit Reynolds number makes the instability wave in conical boundary layer develop to the later evolution stage,and the boundary layer is destabilized earlier. |
来源
|
空天技术
,2023,2023(3):1-14 【核心库】
|
DOI
|
10.16338/j.issn.2097-0714.20230502
|
关键词
|
高超声速
;
边界层转捩
;
大尺度模型
;
风洞实验
;
不稳定波
|
地址
|
1.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
2097-0714 |
学科
|
力学 |
基金
|
国家自然科学基金
;
国家重点研发计划
|
文献收藏号
|
CSCD:7532238
|
参考文献 共
36
共2页
|
1.
周恒. 有关近空间高超声速飞行器边界层转捩和湍流的两个问题.
空气动力学学报,2017,35(2):5
|
CSCD被引
1
次
|
|
|
|
2.
刘向宏. 高超声速边界层转捩实验综述.
空气动力学学报,2018,36(2):196-212
|
CSCD被引
21
次
|
|
|
|
3.
陈坚强. 高超声速边界层转捩研究现状与发展趋势.
空气动力学学报,2017,35(3):311-337
|
CSCD被引
71
次
|
|
|
|
4.
陈坚强. 高超声速边界层转捩的几点认识.
中国科学:物理学,力学,天文学,2019(11):114701
|
CSCD被引
6
次
|
|
|
|
5.
罗纪生. 高超声速边界层的转捩及预测.
航空学报,2015,36(1):357-372
|
CSCD被引
40
次
|
|
|
|
6.
Fedorov A. High Speed Boundary-layer stability on a cone with localized wall heating or cooling.
AIAA Journal,2015,53(9):2512-2524
|
CSCD被引
5
次
|
|
|
|
7.
Lee C. Recent progress in the study of transition in the hypersonic boundary layer.
National Science Review,2019,6(1):155-170
|
CSCD被引
8
次
|
|
|
|
8.
Alexander F. Transition and stability of high speed boundary layers.
Annual Review of Fluid Mechanics,2011,43(1):79-95
|
CSCD被引
55
次
|
|
|
|
9.
李锋. 高超声速飞行器中若干气动难题的实验研究.
现代防御技术,2014,42(5):7
|
CSCD被引
1
次
|
|
|
|
10.
刘强. 延迟高超声速边界层转捩技术研究进展.
航空学报,2022,43(7):8-22
|
CSCD被引
1
次
|
|
|
|
11.
Reshotko E. Transition issues at hypersonic speeds.
44th AIAA Aerospace Sciences Meeting and Exhibit,2006
|
CSCD被引
1
次
|
|
|
|
12.
Yang H. Research progress of hypersonic boundary layer transition control experiments.
Advances in Aerodynamics,2022,4(1):18
|
CSCD被引
1
次
|
|
|
|
13.
Tollmien W. Uber die entstehung der turbulenz.
Vortrage aus dem Gebiete der Aerodynamik und verwandter Gebiete:Aachen,1929,1930:18-21
|
CSCD被引
1
次
|
|
|
|
14.
Schlichting H.
Boundary layer theory,1961
|
CSCD被引
2
次
|
|
|
|
15.
Lin C C. On the stability of two-dimensional parallel flows.
Physics,1945,3:316-324
|
CSCD被引
1
次
|
|
|
|
16.
Morkovin M. Transition in open flow system a reassessment.
Bulletin of American Physical Society,1994,39(9):1882
|
CSCD被引
5
次
|
|
|
|
17.
Mack L M.
Boundary layer linear stability theory,1984
|
CSCD被引
2
次
|
|
|
|
18.
Herbert T. Parabolized stability equations.
Annual Review of Fluid Mechanics,1997,29(1):245-283
|
CSCD被引
55
次
|
|
|
|
19.
Li X. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack.
Physics of Fluids,2010,22(2):025105
|
CSCD被引
9
次
|
|
|
|
20.
Li X. Direct numerical simulation of hypersonic boundary-layer transition of blunt cones.
Tenth International Conference on Computational Fluid Dynamics,2018
|
CSCD被引
1
次
|
|
|
|
|