典型碳基材料高温界面光谱演化特性实验研究
Experimental investigations of spectroscopic characteristics in high temperature interface on carbon-based composite materials
查看参考文献24篇
文摘
|
高焓非平衡环境下防热材料表面特性的科学测试与评价是准确预测飞行器热载荷、热防护材料选择与结构设计的关键。材料表面离解原子数密度与物理化学进程密切相关,由于在高焓非平衡流场中实现防热材料表面原子数密度定量测量难度极大,且有效测量手段异常匮乏,高焓非平衡流场与防热材料特性耦合作用机制仍缺乏清晰认知。为深入探究防热材料表面气-固耦合作用机制,本研究基于发射/吸收光谱融合测量方法,并利用大功率高频感应风洞提供高焓等离子体流场环境,针对典型碳基复合材料开展实验验证。碳基复合材料加热时间为92 s,气流焓值为20 MJ/kg,驻点压力为1.8 kPa。实验获得的光谱结果与宏观规律具有一致性,表明本研究提出的辐射/吸收融合光谱诊断方法具有应用于防热材料与高焓非平衡流高温界面耦合效应研究的潜力。 |
其他语种文摘
|
Precise prediction of aerothermal loads and precise design of thermal protection systems are significantly limited by the unclear interactions between the thermal protection system surface and the surrounding high enthalpy gas.Atomic number density is an important parameter because it is closely related to reaction processes.However,due to limited diagnotic methods,it is hard to quantify atomic number density in the high enthalpy flow.To address this,an optical diagnostic method based on optical emission spectroscopy(OES) and laser absorption spectroscopy (LAS) is proposed to investigate coupling mechanisms of gas-surface interactions.Experiments are conducted on a high power inductively coupled plasma wind tunnel.C/C composite material is heated for 92 s with the enthalpy of 20 MJ/kg and the stagnation pressure of 1.8 kPa.The self-consistent results show that it has the ability to diagnose the gas-surface interactions between high enthalpy plasma and thermal protection materials. |
来源
|
空天技术
,2023,2023(1):159-169 【核心库】
|
DOI
|
10.16338/j.issn.2097-0714.20220188
|
关键词
|
高焓非平衡流
;
气-固耦合效应
;
电感耦合等离子体风洞
;
碳基复合材料
;
激光吸收光谱
;
发射光谱
|
地址
|
1.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
3.
中国航天空气动力技术研究院, 电弧等离子应用装备北京市重点实验室, 北京, 100074
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
2097-0714 |
学科
|
航空 |
基金
|
国家自然科学基金
;
广东省重点领域研发计划
;
中国科学院青年创新促进会项目
|
文献收藏号
|
CSCD:7532225
|
参考文献 共
24
共2页
|
1.
Meyers J. Laser spectroscopic investigation of surface-catalyzed reactions for Mars exploration vehicles.
27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. AIAA Conference. AIAA 2010-4915,2010
|
CSCD被引
1
次
|
|
|
|
2.
Massuti-Ballester B. Experimental methodology to assess atomic recombination on high-temperature materials.
Journal of Thermophysics and Heat Transfer,2017,32(2):353-368
|
CSCD被引
3
次
|
|
|
|
3.
Panerai F. Surface temperature jump beyond active oxidation of carbon/silicon carbide composites in extreme aerothermal conditions.
Carbon,2014,71:102-119
|
CSCD被引
7
次
|
|
|
|
4.
Kim I. Catalytic recombination assessment on carbon in dissociated shock tube flow.
Acta Astronautica,2021,181:52-60
|
CSCD被引
1
次
|
|
|
|
5.
Fletcher D. Surface catalyzed reaction efficiencies in oxygen plasmas from laser-induced fluorescence measurements.
Journal of Thermophysics and Heat Transfer,2016,31(2):410-420
|
CSCD被引
1
次
|
|
|
|
6.
Takahashi Y. Analysis of radio frequency blackout for a blunt-body capsule in atmospheric reentry missions.
Aerospace,2016,3(1)
|
CSCD被引
1
次
|
|
|
|
7.
Stewart D. Determination of surface catalytic efficiency for thermal protection materials-Room temperature to their upper use limit.
31st Thermophysics Conference,1996
|
CSCD被引
1
次
|
|
|
|
8.
Pidan S. Determination of recombination coefficients and spectral emissivity of thermal protection materials.
37th AIAA Thermophysics Conference,2004
|
CSCD被引
2
次
|
|
|
|
9.
Herdrich G. Experimental and numerical techniques to assess catalysis.
Progress in Aerospace Sciences,2012,48/49:27-41
|
CSCD被引
7
次
|
|
|
|
10.
Anna A. Numerical analysis of surface chemistry in high-enthalpy flows.
Journal of Thermophysics and Heat Transfer,2015,29(4):653-670
|
CSCD被引
1
次
|
|
|
|
11.
Cui Z L. Competing effects of surface catalysis and ablation in hypersonic reentry aerothermodynamic environment.
Chinese Journal of Aeronautics,2021,35(10):56-66
|
CSCD被引
5
次
|
|
|
|
12.
Thoemel J. Development of an in-flight catalysis experiment within the EXPERT program.
46th AIAA Aerospace Sciences Meeting and Exhibit. AIAA 2008-637,2008
|
CSCD被引
1
次
|
|
|
|
13.
Park C. Calculation of stagnation-point heating rates associated with Stardust vehicle.
Journal of Spacecraft and Rockets,2007,44(1):24-32
|
CSCD被引
2
次
|
|
|
|
14.
Pidan S. Recombination coefficients and spectral emissivity of silicon carbide-based thermal protection materials.
Journal of Thermophysics and Heat Transfer,2005,19(4):566-571
|
CSCD被引
5
次
|
|
|
|
15.
Bedra L. Comparative modeling study and experimental results of atomic oxygen recombination on silica-based surfaces at high temperature.
Aerospace Science and Technology,2005,9(4):318-328
|
CSCD被引
3
次
|
|
|
|
16.
洪启臻.
高温热化学非平衡流动的精细模拟研究,2022:5-7
|
CSCD被引
2
次
|
|
|
|
17.
Capitelli M.
Plasma kinetics in atmospheric gases. 2000th edition,2000
|
CSCD被引
1
次
|
|
|
|
18.
Nations M. Characterization of a large-scale arcjet facility using tunable diode laser absorption spectroscopy.
AIAA Journal,2017,55(11):3757-3766
|
CSCD被引
5
次
|
|
|
|
19.
Penache C. Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy.
Plasma Sources Science and Technology,2002,11(4):476-483
|
CSCD被引
11
次
|
|
|
|
20.
Suzuki S. Experimental study for atomic oxygen catalytic efficiency on TPS surfaces using microwave discharged plasma.
51st AIAA Aerospace Sciences Meeting. AIAA conference. AIAA 2013-0742,2013
|
CSCD被引
1
次
|
|
|
|
|