石墨烯与导电聚合物PSS∶PEDOT共包覆对LiCoO_2材料高电压电化学性能的影响
Preparation of LiCoO_2 composite coated with graphene and PEDOT∶PSS with enhanced electrochemical properties at high voltage for lithium-ion batteries
查看参考文献33篇
|
文摘
|
采用易于规模化的湿法包覆工艺成功制备了石墨烯纳米片与聚(3,4-亚乙基二氧噻吩)∶聚(苯乙烯磺酸盐) (PEDOT∶PSS)共包覆的LiCoO_2正极材料(GP-LCO),使用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)及电化学测试方法研究包覆前后材料的晶体结构、微观形貌及电化学性质。结果表明∶均匀分散的石墨烯纳米片(1%,质量分数,下同)与PEDOT∶PSS (2%)在LiCoO_2颗粒表面形成均一的包覆层;电化学测试结果表明,石墨烯纳米片与PEDOT:PSS所形成的复合包覆层不仅提升了材料的电化学反应速率,还改善了电化学反应的可逆性;经过表面包覆的GP-LCO添加2% Super P导电剂所制备的电极,在2.5~4.5 V(vs. Li~+/Li)的电压范围内,0.1 C倍率下首次放电比容量173.9 mAh/g,10 C倍率下仍能表现出118.0 mAh/g的放电容量,循环性能和倍率性能均优于未包覆的LiCoO_2材料(LCO)。 |
|
其他语种文摘
|
LiCoO_2 coated with graphene and PSS:PEDOT(GP-LCO)is synthesized by a facile and scalable method. The structure and morphology of LiCoO_2(LCO) and GP-LCO have been investigated by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Transmission electron microscopy(TEM)further demonstrate the existence of graphene and PSS:PEDOT. The electrochemical properties of the composites are investigated by cyclic voltammetry and AC impedance measurements, which show that the conductive film of graphene(1%)and PSS:PEDOT(2%)on the surface significantly decreases the charge transfer resistance and improves the cycle stability of LiCoO_2. Galvanostatic charge-discharge test reveals that with only 2% Super P as conductive additive, the GP-LCO delivers a capacity of 173.9 mAh/g at 0.1 C and 118.0 mAh/g at 10 C, which are higher than the pristine LCO in the potential range of 3.0-4.5 V(vs. Li/Li~+). Moreover, it is clearly noticed that the GP-LCO exhibits a capacity retention of 76.6% after 100 cycles at 0.1C, while the LCO only presents a capacity retention of 41.1%. |
|
来源
|
航空材料学报
,2023,43(4):129-136 【核心库】
|
|
DOI
|
10.11868/j.issn.1005-5053.2019.000162
|
|
关键词
|
LiCoO_2
;
石墨烯
;
PSS:PEDOT
;
表面包覆
;
电化学性能
|
|
地址
|
1.
中国航发北京航空材料研究院, 北京, 100095
2.
北京石墨烯技术研究院有限公司, 北京, 100095
3.
鲁东大学物理与光电工程学院, 山东, 烟台, 264025
|
|
语种
|
中文 |
|
文献类型
|
研究性论文 |
|
ISSN
|
1005-5053 |
|
学科
|
化学工业 |
|
文献收藏号
|
CSCD:7530398
|
参考文献 共
33
共2页
|
|
1.
Thackeray M M. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries.
Energy & Environmental Science,2012,5(7):7854-7863
|
CSCD被引
145
次
|
|
|
|
|
2.
Goodenough J B. Challenges for rechargeable Li batteries.
Chemistry of Materials,2010,22(3):587-603
|
CSCD被引
681
次
|
|
|
|
|
3.
Whittingham M S. Lithium batteries and cathode materials.
Chemical Reviews,2004,104(10):4271-4302
|
CSCD被引
358
次
|
|
|
|
|
4.
Guo Y. Nanostructured materials for electrochemical energy conversion and storage devices.
Advanced Materials,2008,20(15):2878-2887
|
CSCD被引
135
次
|
|
|
|
|
5.
Ohzuku T. Solid-state redox reactions of LiCoO_2(R3m) for 4 volt secondary lithium cells.
Journal of the Electrochemical Society,1994,141(11):2972-2977
|
CSCD被引
46
次
|
|
|
|
|
6.
Delmas C. An overview of the Li(Ni, M) O_2 systems: syntheses, structures and properties.
Electrochimica Acta,1999,45(1/2):243-253
|
CSCD被引
42
次
|
|
|
|
|
7.
Amatcci G G. CoO_2, the end member of the LixCoO_2 solid solution.
Journal of the Electrochemical Society,1996,143(3):1114-1123
|
CSCD被引
41
次
|
|
|
|
|
8.
Wang Z. Electrochemical evaluation and structural characterization of commercial LiCoO_2 surface modified with MgO for lithium-ion batteries.
Journal of the Electrochemical Society,2002,149(4):466-471
|
CSCD被引
6
次
|
|
|
|
|
9.
Cho J P. LiCoO_2 cathode material that does not show a phase transition from hexagonal to monoclinic phase.
Journal of the Electrochemical Society,2001,148(10):1110-1115
|
CSCD被引
11
次
|
|
|
|
|
10.
Wang H F. TEM study of electrochemical cycling-induced damage and disorder in LiCoO_2 cathodes for rechargeable lithium batteries.
Journal of the Electrochemical Society,1999,146(2):473-480
|
CSCD被引
47
次
|
|
|
|
|
11.
Sun Y K. Significant improvement of high voltage cycling behavior AlF_3-coated LiCoO_2 cathode.
Electrochemistry Communications,2006,8(5):821-826
|
CSCD被引
23
次
|
|
|
|
|
12.
Mizushima K. Lix-CoO_2(0
|
CSCD被引
154
次
|
|
|
|
|
|
13.
Oh S. Effect of Al_2O_3 coating on electrochemical performance of LiCoO_2 as cathode materials for secondary lithium batteries.
Journal of Power Sources,2004,132(1/2):249-255
|
CSCD被引
15
次
|
|
|
|
|
14.
Miyashiro H. Improvement of degradation at elevated temperature and at high state-of-charge storage by ZrO_2 coating on LiCoO_2.
Journal of the Electrochemical Society,2006,153(2):348-353
|
CSCD被引
4
次
|
|
|
|
|
15.
Mladenov M. Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO_2 electrodes.
Electrochemistry Communications,2001,3(8):410-416
|
CSCD被引
14
次
|
|
|
|
|
16.
Lynch C T.
Practical handbook of materials science,1989
|
CSCD被引
1
次
|
|
|
|
|
17.
Cao J. Polypyrrole-coated LiCoO_2 nanocomposite with enhanced electrochemical properties at high voltage for lithium-ion batteries.
Journal of Power Sources,2015,281:49-55
|
CSCD被引
8
次
|
|
|
|
|
18.
Lee E H. Direct surface modification of high-voltage LiCoO_2 cathodes by UVcured nanothickness poly(ethylene glycol diacrylate)gel polymer electrolytes.
Electrochimica Acta,2013,104:249-254
|
CSCD被引
2
次
|
|
|
|
|
19.
Park J H. Thickness-tunable polyimide nanoencapsulating layers and their influence on cell performance/thermal stability of high-voltage LiCoO_2 cathode materials for lithium-ion batteries.
Journal of Power Sources,2013,244:442-449
|
CSCD被引
5
次
|
|
|
|
|
20.
Andrea F. PPy doped PEG conducting polymer films synthesized on LiFePO_4 particles.
Journal of Power Sources,2010,195(12):3907-3912
|
CSCD被引
7
次
|
|
|
|
|