SiC_f/TC17复合材料制备方法对界面反应层生长动力学的影响
Investigation on the influence of SiC_f/TC17 composites preparation method on growth kinetics of interfacial reactive layer
查看参考文献17篇
文摘
|
连续SiC纤维增强钛基复合材料(SiC_f/Ti复合材料)具有良好的比强度和综合力学性能,是新一代装备研制备受关注的轻质高温结构材料。SiC_f/Ti复合材料可采用箔压法(FFF)和基体涂层法(MCF)进行制备,为对比两种工艺方法对其界面反应生长的影响,采用FFF和MCF分别制备SiC_f/TC17复合材料。对两种工艺制备的SiC_f/TC17复合材料在高温下(800~900 ℃)进行热暴露处理,通过扫描电镜对其微观结构及界面反应层厚度进行分析,获得界面反应层在高温下的生长速率,并进一步获得不同制备工艺状态下材料的界面反应动力学参数。结果表明:相同温度下MCF法制备的SiC_f/TC17复合材料界面反应速率大于FFF法制备的复合材料,前者的反应速率因子k0为4.942×10~(-3) m/s~(1/2),反应激活能Q为276.3 kJ/mol,后者的界面反应速率因子k0为8.149×10~(-3) m/s~(1/2),反应激活能Q为291.7 kJ/mol。这是由于MCF法制备的钛合金基体具有更微小的相组织,具有较小的反应激活能,在高温下具有更高的元素扩散速率。 |
其他语种文摘
|
Continuous SiC fiber reinforced titanium matrix composite(SiC_f/Ti composite) has good specific strength and comprehensive mechanical properties, it is a lightweight high temperature structural material that attracts much attention in the new generation of equipment development. SiC_f/Ti composites can be prepared by the methods of foil fiber foil(FFF)and matrix coating fiber(MCF). In order to compare the effects of the two methods on the growth of interfacial reaction, SiC_f/TC17 composites were prepared by FFF and MCF respectively. By study the interfacial reaction layer thickness of composites prepared by the two processes after thermal exposure at the temperature from 800℃ to 900 ℃, the microstructure and the thickness of interfacial layer were analyzed by scanning electron microscope, further the interfacial reaction rate at high temperature was obtained, and the interfacial reaction kinetic parameters of different materials were attained. The results showed that the interfacial reaction rate of SiC_f/TC17 composite prepared by MCF method was higher than that of the composites prepared by FFF method at the same temperature. The interfacial reaction rate factor k0 is 4.942×10~(-3) m/s~(1/2) and 8.149×10~(-3) m/s~(1/2) for the composites prepared by MCF and FFF method, respectively. Additionally, the reaction activation energy Q is 276.3 kJ/mol and 291.7 kJ/mol for those, respectively. This is because the titanium alloy matrix prepared by MCF method has smaller phase structure and higher element diffusion rate at high temperature. Therefore, the composite prepared by MCF has lower reaction activation energy at high temperature. |
来源
|
航空材料学报
,2023,43(4):68-75 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2022.000213
|
关键词
|
SiC_f/Ti复合材料
;
箔压法
;
基体涂层法
;
反应动力学
|
地址
|
1.
中国航发北京航空材料研究院, 北京, 100095
2.
中国航空发动机集团先进钛合金重点实验室, 北京, 100095
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
一般工业技术 |
文献收藏号
|
CSCD:7530391
|
参考文献 共
17
共1页
|
1.
Doorbar P J. Development of continuously reinforced metal matrix composites for aerospace applications.
Comprehensive Composite Materials II,2018,4:439-462
|
CSCD被引
2
次
|
|
|
|
2.
Durodola J F. Continuously reinforced metal matrix composites.
Comprehensive Composite Materials,2000,3:717-739
|
CSCD被引
2
次
|
|
|
|
3.
Ghonem H.
Durability and damage tolerance of high temperature advanced titanium metal matrix composites: final report of department of air force,2000:1-310
|
CSCD被引
1
次
|
|
|
|
4.
Leucht R. Properties of SiC-fibre reinforced titanium alloys processed by fibre coating and hot isostatic pressing.
Materials Science and Engineering: A,1994,188(1):201-210
|
CSCD被引
8
次
|
|
|
|
5.
Wu M. Temperaturedependent evolution of interfacial zones in SiCf/C/Ti_(17) composites.
RSC Advances,2017,7(72):45327-45334
|
CSCD被引
4
次
|
|
|
|
6.
Kumpfert J. Advanced TMCs for highly loaded components. Spacecraft structures, materials and mechanical testing.
European Conference on Spacecrafts. 428,1999:315-320
|
CSCD被引
1
次
|
|
|
|
7.
Malcolm W C.
Titanium metal matrix composites,2001
|
CSCD被引
1
次
|
|
|
|
8.
Hall I W. Interfacial reactions in titanium-matrix composites.
Journal of Materials Science Letters,1991,10(5):263-266
|
CSCD被引
5
次
|
|
|
|
9.
Guo Z X. Solid-state fabrication and interfaces of fibre reinforced metal matrix composites.
Progress in Materials Science,1995,39(4):411-495
|
CSCD被引
19
次
|
|
|
|
10.
Haque S. Finite element modelling of the effect of a functionally graded protective coating for SiC monofilaments on Ti-based composite behaviour.
Materials Science and Engineering:A,2000,291(1):97-109
|
CSCD被引
8
次
|
|
|
|
11.
Dudek H J. Transmission electron microscopy of the fibre-matrix interface in SiC-SCS-6-fibre-reinforced IMI834 alloys.
Journal of Materials Science,1997,32(20):5355-5362
|
CSCD被引
10
次
|
|
|
|
12.
Yang Y Q. TEM investigations of the fiber matrix interface in SCS-6/Ti-25Al-10Nb-3V-1Mo composites.
Composites Parts A,1998,29(9/10):1235-1241
|
CSCD被引
21
次
|
|
|
|
13.
Lu X. Kinetics and mechanism of interfacial reaction in SCS-6 SiC continuous fiber-reinforced Ti-Al intermetallic matrix composites.
Transactions of Nonferrous Metals Society of China,2006,16(1):77-83
|
CSCD被引
8
次
|
|
|
|
14.
Rabeeh B M. The tensile behavior of a silicon carbide fiberreinforced titanium matrix composite.
Applied Composite Materials,1996,3:215-247
|
CSCD被引
1
次
|
|
|
|
15.
Guo S Q. Microstructural characterization of interface in SiC fiber-reinforced Ti-15V-3Cr-3Al-3Sn matrix composite.
Materials Science and Engineering:A,1998,246(1):25-35
|
CSCD被引
8
次
|
|
|
|
16.
Wu M. Interfacial reactions in SiCf/C/Ti_(17) composites dominated by texture of carbon coatings.
Carbon,2017,124:238-249
|
CSCD被引
8
次
|
|
|
|
17.
李虎.
连续SiC纤维增强钛基复合材料界面化学及力学行为研究,2016
|
CSCD被引
2
次
|
|
|
|
|