合金材料在锂金属负极中的应用研究进展
Research progress of alloy materials’ application in lithium metal anode
查看参考文献95篇
文摘
|
金属锂具有极低的电极电势及超高的比容量,是高比能锂二次电池的理想负极材料。然而,锂枝晶生长、体积膨胀效应及界面不稳定等问题限制了其商业化应用。通过合金负极、界面保护、负极结构设计及固态电解质等策略,可显著改善上述问题。锂合金材料具有高比容量、高离子电导率及良好亲锂性等特点,在上述策略中均扮演着重要角色。本文介绍合金材料的电化学性质,综述近年来合金材料在锂金属负极中的应用研究进展;最后梳理合金材料在锂金属负极中应用所面临的问题,并提出加强基础理论研究等建议。 |
其他语种文摘
|
Lithiumis are considered as an ideal anode material for the next generation high energy density secondary batteries owing to its extremely low reduction potential and high specific capacity. However,its commercial application in lithium metal batteries is hindered by the problems of lithium dendritic growth,volume expansion effect and interface instability.To solve this problems,effective strategies including alloy anode,interface protection,structured anode design and solid electrolyte have been developed.Alloy materials play an important role in above strategies with its superior specific capacity,high Li+conductivity and good lithium affinity.The electrochemical properties of alloy were reviewed and the recent research development of alloy materials’application in lithium metal anode was futher discussed.Last,the main existing problems of alloy materials’application in lithium metal anode were summarized and it was pointed out that the basic theoretical research should be strengthened. |
来源
|
材料工程
,2023,51(7):78-88 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000029
|
关键词
|
合金负极
;
界面保护
;
负极结构设计
;
固态电解质
;
锂金属负极
|
地址
|
1.
中国航发北京航空材料研究院, 北京, 100095
2.
中国地质大学(武汉)材料与化学学院, 地质探测与评估教育部重点实验室, 武汉, 430074
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
文献收藏号
|
CSCD:7529776
|
参考文献 共
95
共5页
|
1.
Evarts E C. Lithium batteries:to the limits of lithium.
Nature,2015,526:93-95
|
CSCD被引
41
次
|
|
|
|
2.
Grandl. The lithium/air battery:still an emerging system or a practical reality.
Advanced Materials,2015,27(5):784-800
|
CSCD被引
1
次
|
|
|
|
3.
马昊. 锂离子电池Sn基负极材料研究进展.
材料工程,2017,45(6):138-146
|
CSCD被引
10
次
|
|
|
|
4.
Xu W. Lithium metal anodes for rechargeable batteries.
Energy & Environmental Science,2014,7:513-537
|
CSCD被引
320
次
|
|
|
|
5.
Sun Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries.
Nature Energy,2016,1:16071
|
CSCD被引
179
次
|
|
|
|
6.
Cheng X B. Dendrite-free lithium metal anodes:stable solid electrolyte interphases for high-efficiency batteries.
Journal of Materials Chemistry A,2015,3:7207-7209
|
CSCD被引
14
次
|
|
|
|
7.
Xiang J. Alkali metal anode:from lab to market.
Joule,2019,3:2334-2363
|
CSCD被引
39
次
|
|
|
|
8.
Okajima Y. A phase field model for electrode reactions with butler volmer kinetics.
Computational Materials Science,2011,50(1):118-124
|
CSCD被引
1
次
|
|
|
|
9.
Ding F. Dendrite free lihthium deposition via self healing electrostatic shield mechanism.
Journal of the American Chemical Society,2013,135(11):4450-4456
|
CSCD被引
178
次
|
|
|
|
10.
Wang X. Stress driven lihtium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates.
Nature Energy,2018,3(3):227-235
|
CSCD被引
45
次
|
|
|
|
11.
Chen X R. Review on deposition in working batteries:from nucleation to early growth.
Advanced Materials,2021,24:2004128
|
CSCD被引
49
次
|
|
|
|
12.
Shen K. Magnetic field suppressed lihtium dendrite growth for stable metal batteries.
Advanced Energy Materials,2019,9(20):1900260
|
CSCD被引
35
次
|
|
|
|
13.
Chang H J. Investigation Li microstructure formation on Li anode for lithium batteries by in situ 6Li/Li NMR and SEM.
The Journal of Physical Chemistry C,2015,119(29):16443-16451
|
CSCD被引
10
次
|
|
|
|
14.
Chandrashekar S. 7Li MRI of Li batteries reveals location of microstructural lithium.
Nature Materials,2012,11:311-315
|
CSCD被引
21
次
|
|
|
|
15.
Wood K N. Dendrites and pits:untangling the complex behavior of lithium metal anodes through operando video microscopy.
ACS Central Science,2016,2:790-801
|
CSCD被引
49
次
|
|
|
|
16.
Yan K. Temperature dependat nucieation and growth of dendrite free lithium metal anodes.
Angewandte Chemie International Edition,2019,58(33):11364-11368
|
CSCD被引
27
次
|
|
|
|
17.
Lin D C. Reviving the lithium metal anode for high-energy batteries.
Nature Nanotechnology,2017,12:194-206
|
CSCD被引
520
次
|
|
|
|
18.
Cheng X B. Toward safe lithium metal anode in rechargeable batteries:a review.
Chemical Reviews,2017,117(15):10403-10473
|
CSCD被引
567
次
|
|
|
|
19.
Fang Y. A highly stable lithium metal anode enabled by Ag nanoparticle-embedded nitrogendoped carbon macroporous fibers.
American Association for the Advancement of Science,2021,7(21):3626
|
CSCD被引
1
次
|
|
|
|
20.
Luo Z. Dendrite-free lithium metal anode with lithiophilic interphase from hierarchical frameworks by tuned nucleation.
Energy Storage Materials,2020,27:124-132
|
CSCD被引
20
次
|
|
|
|
|