垂直管中双尺寸颗粒群的混合及分离规律研究
THE MIXING AND SEGREGATION OF BINARY PARTICLES TRANSPORTATION IN VERTICAL PIPE
查看参考文献31篇
文摘
|
深海能源的开发利用近年来受到各国关注,而深海矿石是深海能源的重要组成部分.文章以深海采矿的垂直管水力输送为研究背景,其管道内流的典型特征是颗粒级配宽且颗粒浓度高.宽级配特征下,管道内存在粗细颗粒混合及分离的现象,可能导致颗粒局部浓度增加,危害输送安全.因此,文章研究垂直管内双尺寸颗粒群的混合及分离机理.采用计算流体力学-离散元方法(CFD-DEM)开展数值模拟,针对粗细颗粒尺寸差异大导致体积浓度计算不准确的问题,提出颗粒群体积浓度计算修正模型以及欧拉场到拉格朗日场的数据映射模型,并进行程序实现及模型验证.研究发现粗细颗粒混合及分离过程会造成颗粒群前后出现间断,并且增加颗粒群局部体积浓度及颗粒碰撞频率.还定义无量纲颗粒碰撞应力和流固相互作用应力,表征颗粒碰撞强度和流固相互作用强度.颗粒群混合到分离过程中颗粒碰撞应力显著增加,因此可通过颗粒碰撞应力曲线确定初始混合到完全分离的时刻.此外,流固相互作用的差异是引起粗细颗粒分离的根本原因. |
其他语种文摘
|
The development of deep-sea resources has attracted the attention of various countries in recent years where the mineral resources is an important part. This paper considers the internal flow in hydraulic conveying during the deepsea mining, which is characterized by wide particle gradation and high particle volume concentration. The wide particle gradation will lead to the particle mixing and segregation, which may result in high local particle concentration. The mixing and segregation of binary particles transportation in vertical pipe is investigated based on the computational fluid dynamics-discrete element method (CFD-DEM). A virtual mass distribution function method is proposed for calculating the coarse particle volume fraction field. In addition, a weighted function method relating the particle size is given for the interpolation between the Eulerian and Lagrangian field. The two models are implanted in the open source code CFDEM based on the based on the C++ programming language. Then, the numerical method is verified by comparing the pressure drop and the minimum fluidization velocity of a fluidized bed case between the simulation results and analytical results. The study found that the mixing and segregation of binary particles will cause a gap between the front mixing area and the no-mixing area at the rear. The local particle concentration and the particle collision frequency increase also increased significantly. The particle collision stress and fluid-particle interaction stress are given, which are the ratios of unit particle collision force and unit fluid drag force to unit particle buoyant force, respectively, to explain the particle segregation mechanism. The particle mixing stage makes the particle collision stress increasing. Therefore, the moment from initial mixing to complete separation can be determined by the particle collision stress curve. In addition, the difference of fluid-particle interaction stress between the binary particle results the particle segregation because the fluidsolid interaction stress of fine particles is always greater than that of the coarse particles. |
来源
|
力学学报
,2023,55(7):1582-1592 【核心库】
|
DOI
|
10.6052/0459-1879-23-020
|
关键词
|
垂直管道
;
粗颗粒
;
颗粒分离
;
CFD-DEM
|
地址
|
1.
中国科学院力学研究所, 中国科学院流固耦合系统力学重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
力学 |
基金
|
国家自然科学基金
;
中科院先导A
;
中科院青促会
|
文献收藏号
|
CSCD:7519766
|
参考文献 共
31
共2页
|
1.
康娅娟. 深海多金属结核商业开采水下垂直提升方案.
中国有色金属学报,2021,31(10):2938-2952
|
CSCD被引
5
次
|
|
|
|
2.
Zhang Y. Numerical simulation on transportation behavior of dense coarse particles in vertical pipe with an optimized Eulerian–Lagrangian method.
Physics of Fluids,2022,34(3):033305
|
CSCD被引
2
次
|
|
|
|
3.
Zhou M M. CFD-DEM modelling of hydraulic conveying of solid particles in a vertical pipe.
Powder Technology,2019,354:893-905
|
CSCD被引
12
次
|
|
|
|
4.
夏建新. 粗颗粒物料在垂直管流中的滞留效应.
矿冶工程,2020,22(3):37-40
|
CSCD被引
1
次
|
|
|
|
5.
Van Wijk J. Stability of vertical hydraulic transport processes for deep ocean mining: An experimental study.
Ocean Engineering,2016,125:203-213
|
CSCD被引
1
次
|
|
|
|
6.
宋跃文. 垂直提升管道中粗颗粒滑移速度试验研究.
矿冶工程,2016,36:5-7
|
CSCD被引
6
次
|
|
|
|
7.
杨建民. 我国深海矿产资源开发装备研发现状与展望.
中国工程科学,2020,22(6):1-9
|
CSCD被引
28
次
|
|
|
|
8.
Li D Y. twoWayGPBEFoam: An opensource Eulerian QBMM solver for monokinetic bubbly flows.
Computer Physics Communications,2020,250:107036
|
CSCD被引
1
次
|
|
|
|
9.
Dai Y. Numerical and experimental investigations on pipeline internal solid-liquid mixed fluid for deep ocean mining.
Ocean Engineering,2021,220:108411
|
CSCD被引
7
次
|
|
|
|
10.
刘磊.
深海采矿水力提升固液两相流动力学特性研究.[博士论文],2019
|
CSCD被引
2
次
|
|
|
|
11.
Cunez F D. Mimicking layer inversion in solid-liquid fluidized beds in narrow tubes.
Powder Technology,2020,364:994-1008
|
CSCD被引
1
次
|
|
|
|
12.
Cunez F D. Motion and clustering of bonded particles in narrow solid-liquid fluidized beds.
Physics of Flu-ids,2021,33(2):023303
|
CSCD被引
1
次
|
|
|
|
13.
Ren W L. Investigation of the characteristics and mechanisms of the layer inversion in binary liquid-solid fluidized beds with coarse particles.
Physics of Fluids,2022,34(10):103325
|
CSCD被引
1
次
|
|
|
|
14.
Zhou M M. CFD-DEM analysis of hydraulic conveying bends: Interaction between pipe orientation and flow regime.
Powder Technology,2021,392:619-631
|
CSCD被引
3
次
|
|
|
|
15.
Yao Y N. Competing flow and collision effects in a monodispersed liquid–solid fluidized bed at a moderate Archimedes number.
Journal of Fluid Mechanics,2021,927:A28
|
CSCD被引
1
次
|
|
|
|
16.
Zhang Y. Numerical simulation on flow characteristics of large-scale submarine mudflow.
Applied Ocean Research,2021,108:102524
|
CSCD被引
1
次
|
|
|
|
17.
沈义俊. 深海矿物资源开发系统关键力学问题及技术挑战.
力学与实践,2022,44(5):1005-1020
|
CSCD被引
5
次
|
|
|
|
18.
王予琪. 深海采矿混输泵内流场及粗颗粒运动特性.
排灌机械工程学报,2022,40(8):800-806
|
CSCD被引
4
次
|
|
|
|
19.
Elghobashi S. On predicting particle-laden turbulent flows.
Applied Scientific Research,1994,52(4):309-329
|
CSCD被引
43
次
|
|
|
|
20.
Peng Z B. Influence of void fraction calculation on fidelity of CFD-DEM simulation of gas-solid bubbling fluidized beds.
AIChE Journal,2014,60(6):2000-2018
|
CSCD被引
8
次
|
|
|
|
|