Scheduling Dual-Arm Multi-Cluster Tools With Regulation of Post-Processing Time
查看参考文献44篇
文摘
|
As wafer circuit width shrinks down to less than ten nanometers in recent years, stringent quality control in the wafer manufacturing process is increasingly important. Thanks to the coupling of neighboring cluster tools and coordination of multiple robots in a multi-cluster tool, wafer production scheduling becomes rather complicated. After a wafer is processed, due to high-temperature chemical reactions in a chamber, the robot should be controlled to take it out of the processing chamber at the right time. In order to ensure the uniformity of integrated circuits on wafers, it is highly desirable to make the differences in wafer post-processing time among the individual tools in a multicluster tool as small as possible. To achieve this goal, for the first time, this work aims to find an optimal schedule for a dual-arm multi-cluster tool to regulate the wafer post-processing time. To do so, we propose polynomial-time algorithms to find an optimal schedule, which can achieve the highest throughput, and minimize the total post-processing time of the processing steps. We propose a linear program model and another algorithm to balance the differences in the post-processing time between any pair of adjacent cluster tools. Two industrial examples are given to illustrate the application and effectiveness of the proposed method. |
来源
|
IEEE/CAA Journal of Automatica Sinica
,2023,10(8):1730-1742 【核心库】
|
DOI
|
10.1109/JAS.2023.123189
|
关键词
|
Cluster tool
;
optimization
;
scheduling
|
地址
|
1.
School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, 510006
2.
Institute of Systems Engineering and Collaborative Laboratory for Intelligent Science and Systems, Macau University of Science and Technology, Macau, 999078
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
2329-9266 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
广东省自然科学基金
;
the Science and Technology development fund (FDCT)
;
Macau SAR
;
Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology
|
文献收藏号
|
CSCD:7518246
|
参考文献 共
44
共3页
|
1.
Venkatesh S. A steady state throughput analysis of cluster tools: Dual-blade versus single-blade robots.
IEEE Trans. Semiconductor Manufacturing,1997,10(4):418-424
|
CSCD被引
28
次
|
|
|
|
2.
Shin Y H. Modeling and implementing a real-time scheduler for dual-armed cluster tools.
Computers Industry,2001,45(1):13-27
|
CSCD被引
11
次
|
|
|
|
3.
Lee M. Practical queueing models for preventive maintenance plan optimization: Multiple maintenance types and numerical studies.
IEEE Trans. Semiconductor Manufacturing,2021,34(1):104-114
|
CSCD被引
2
次
|
|
|
|
4.
Munoz R. Review of CVD synthesis of graphene.
Chem. Vap. Deposition,2013,19(10/11/12):297-322
|
CSCD被引
28
次
|
|
|
|
5.
Wu N Q. A Petri net method for schedulability and scheduling problems in single-arm cluster tools with wafer residency time constraints.
IEEE Trans. Semiconductor Manufacturing,2008,21(2):224-237
|
CSCD被引
34
次
|
|
|
|
6.
Wu N Q. Petri net modeling and cycle-time analysis of dual-arm cluster tools with wafer revisiting.
IEEE Trans. Systems, Man, and Cybernetics: Systems,2013,43(1):196-207
|
CSCD被引
9
次
|
|
|
|
7.
Kim J H. Schedulability analysis of time-constrained cluster tools with bounded time variation by an extended Petri net.
IEEE Trans. Automation Science and Engineering,2008,5(3):490-503
|
CSCD被引
17
次
|
|
|
|
8.
Yoon H J. Online scheduling of integrated single-wafer processing tools with temporal constraints.
IEEE Trans. Semiconductor Manufacturing,2005,18(4):390-398
|
CSCD被引
13
次
|
|
|
|
9.
Sriskandarajah C. Scheduling multiple parts in a robotic cell served by a dual-gripper robot.
Operations Research,2004,52(1):65-82
|
CSCD被引
5
次
|
|
|
|
10.
Zuberek W M. Timed petri nets in modeling and analysis of cluster tools.
IEEE Trans. Robotics and Automation,2001,17(5):562-575
|
CSCD被引
20
次
|
|
|
|
11.
Meyyappan M. A review of plasma enhanced chemical vapour deposition of carbon nanotubes.
J. Physics D: Applied Physics,2009,42(21):213001-213015
|
CSCD被引
10
次
|
|
|
|
12.
Liu W. Controllable and rapid synthesis of high-quality and large-area Bernal stacked bilayer graphene using chemical vapor deposition.
Chemistry Materials,2014,26(2):907-915
|
CSCD被引
3
次
|
|
|
|
13.
Lee J H. Completion time analysis of wafer lots in single-armed cluster tools with parallel processing modules.
IEEE Trans. Autom. Science Engineering,2017,14(4):1622-1633
|
CSCD被引
4
次
|
|
|
|
14.
Kim H J. Closed-form expressions on lot completion time for dual-armed cluster tools with parallel processing modules.
IEEE Trans. Autom. Science Engineering,2019,16(2):898-907
|
CSCD被引
4
次
|
|
|
|
15.
Roh D H. K-cyclic schedules and the worst-case wafer delay in a dual-armed cluster tool.
IEEE Trans. Semiconductor Manufacturing,2019,32(2):236-249
|
CSCD被引
2
次
|
|
|
|
16.
Lee J H. Scheduling cluster tools for concurrent processing of two wafer types.
IEEE Trans. Autom. Science Engineering,2014,11(2):525-536
|
CSCD被引
9
次
|
|
|
|
17.
Qiao Y. Robust scheduling of time-constrained dual-arm cluster tools with wafer revisiting and activity time disturbance.
IEEE Trans. Systems, Man, Cybernetics: Systems,2019,49(6):1228-1240
|
CSCD被引
1
次
|
|
|
|
18.
Yang F J. Polynomial Approach to Optimal One-wafer Cyclic Scheduling of Treelike Hybrid Multi-Cluster Tools via Petri Nets.
IEEE/CAA J. Autom. Sinica,2018,5(1):270-280
|
CSCD被引
9
次
|
|
|
|
19.
Qiao Y. Wafer sojourn time fluctuation analysis of time-constrained dual-arm cluster tools with wafer revisiting and activity time variation.
IEEE Trans. Systems, Man, Cybernetics: Systems,2018,48(4):622-636
|
CSCD被引
1
次
|
|
|
|
20.
Nishi T. An efficient deadlock prevention policy for noncyclic scheduling of multicluster tools.
IEEE Trans. Autom. Science Engineering,2018,15(4):1677-1691
|
CSCD被引
4
次
|
|
|
|
|