硅改性酚醛/碳纤维复合材料的制备及烧蚀性能
Preparation and ablation performance of silica modified phenolic/carbon fiber composite
查看参考文献27篇
文摘
|
针对酚醛树脂(RF)耐热性不足、抗烧蚀性能差,且SiO_2粒子与酚醛树脂相容性的问题,采用共凝胶法制备纳米级的SiO_2/RF杂化气凝胶,通过构建凝胶网络互穿结构,增加两相相容性,探究SiO_2/RF杂化气凝胶的微观结构、化学结构和热物理性能。制备得到硅改性酚醛/碳纤维复合材料,并对改性前后复合材料的烧蚀性能进行比较。结果表明,不同硅含量的杂化气凝胶具有凝胶骨架和孔隙双连续的结构特性,密度分别在0.145~0.160g/cm~3之间。随着硅含量提高,杂化气凝胶残留率增加,Si-O键吸收振动峰更明显,但XRD无衍射峰。综合考虑孔径分布及热物理性能,选取性能最优的杂化气凝胶制备硅改性酚醛/碳纤维复合材料,改性后复合材料的质量烧蚀率为0.046g/s,线烧蚀率为0.074 mm/s。与未改性的复合材料相比,质量烧蚀率降低了20.7%,线烧蚀率降低了21.3%,改性后材料的抗氧化性和烧蚀后的残留率得到明显提升。 |
其他语种文摘
|
Aimed at the problem of insufficient heat resistance and poor ablation resistance of phenolic resin(RF),and the compatibility of SiO_2particles with phenolic resin,the nano-scale SiO_2/RF hybrid aerogel was prepared by the co-gel method.The interpenetrated gel network was constructed to increase the compatibility of two phases.The microstructure,chemical structure and thermophysical properties of the SiO_2/RF hybrid aerogel were explored.The silica-modified phenolic/carbon fiber composite material was prepared.The ablation properties of the composite material before and after modification were compared.The results show that the hybrid aerogel possesses a bi-continuous structure of skeleton and pores.The density of the hybrid aerogel fluctuates in the range of 0.145- 0.160g/cm~3.As the silica content increases,the residual carbon ratio of the hybrid aerogel increases, and the Si-O bond absorption vibration peak is more obvious,but XRD has no diffraction peak. Considering the pore size distribution and thermal physical properties,the silica-modified phenolic/carbon fiber composite material was prepared with the best performance hybrid aerogel.The mass ablation rate of the modified composite material is 0.046g/s,and the linear ablation rate is 0.074 mm/s.Compared with the unmodified composite material,the mass ablation rate is reduced by 20.7%,the linear ablation rate is reduced by 21.3%.The oxidation resistance and the residual carbon ratio of the modified material are significantly improved. |
来源
|
材料工程
,2023,51(6):150-158 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000954
|
关键词
|
SiO_2/RF凝胶网络互穿结构
;
共凝胶法
;
硅改性酚醛/碳纤维复合材料
;
烧蚀性能
|
地址
|
1.
苏州大学材料与化学化工学部, 江苏, 苏州, 215123
2.
哈尔滨工业大学, 特种环境复合材料技术国家级重点实验室, 哈尔滨, 150000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
哈尔滨工业大学特种环境复合材料技术国家级重点实验室基金项目
;
广东省深圳市科技计划项目
|
文献收藏号
|
CSCD:7505514
|
参考文献 共
27
共2页
|
1.
冯志海. 航天飞行器热防护系统低密度烧蚀防热材料研究进展.
材料工程,2020,48(8):14-24
|
CSCD被引
27
次
|
|
|
|
2.
陈玉峰. 空天飞行器用热防护陶瓷材料.
现代技术陶瓷,2017,38(5):311-390
|
CSCD被引
55
次
|
|
|
|
3.
沈自才. 航天器空间辐射防护材料与防护结构.
宇航材料工艺,2020,50(2):1-7
|
CSCD被引
10
次
|
|
|
|
4.
石振海. 航天器热防护材料研究现状与发展趋势.
材料导报,2007,21(8):15-18
|
CSCD被引
8
次
|
|
|
|
5.
Levinskas R. High temperature ablation of composite material under plasma jet impact.
Materials Science,2011,17(4):423-427
|
CSCD被引
2
次
|
|
|
|
6.
Sakraker I. Experimental investigation of passive/active oxidation behavior of SiC based ceramic thermal protection materials exposed to high enthalpy plasma.
Journal of the European Ceramic Society,2013,33(2):351-359
|
CSCD被引
6
次
|
|
|
|
7.
关春龙. 可重复使用热防护系统防热结构及材料的研究现状.
宇航材料工艺,2003(6):9-13
|
CSCD被引
2
次
|
|
|
|
8.
Lundell J H. Performance of charring ablative materials in the diffusion-controlled surface combustion regime.
AIAA Journal,1968,6(6):1118-1126
|
CSCD被引
1
次
|
|
|
|
9.
Natali M. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices:a review.
Progress in Materials Science,2016,84:192-275
|
CSCD被引
39
次
|
|
|
|
10.
Guo M F. Carbon nanotube reinforced ablative material for thermal protection system with superior resistance to high-temperature dense particle erosion.
Aerospace Science and Technology,2020,106:106234
|
CSCD被引
5
次
|
|
|
|
11.
伊廷会. 高性能酚醛树脂改性研究进展.
化工进展,2001(9):13-16
|
CSCD被引
20
次
|
|
|
|
12.
周重光. 有机硅改性酚醛树脂热稳定性的研究.
高分子材料科学与工程,2000,16(1):164-165
|
CSCD被引
25
次
|
|
|
|
13.
Bian C. Influence of borate structure on the thermal stability of boron-containing phenolic resins:a DFT study.
Polymer Degradation and Stability,2015,119:190-197
|
CSCD被引
5
次
|
|
|
|
14.
Nair C P R. Advances in addition-cure phenolic resins.
Progress in polymer science,2004,29(5):401-498
|
CSCD被引
55
次
|
|
|
|
15.
Sandhya P K. Effect of starch reduced graphene oxide on thermal and mechanical properties of phenol formaldehyde resin nanocomposites.
Composites Part B,2019,167:83-92
|
CSCD被引
5
次
|
|
|
|
16.
Yan D. Thermally conductive phenol formaldehyde composites filled with carbon fillers.
Materials Letters,2014,118:212-216
|
CSCD被引
3
次
|
|
|
|
17.
Wei Q. Properties of phenol formaldehyde resin modified with silane coupling agent(KH550).
International Journal of Adhesion and Adhesives,2018,84:166-172
|
CSCD被引
4
次
|
|
|
|
18.
Natali M. A nanostructured ablative bulk molding compound:development and characterization.
Composites Part A,2011,42(9):1197-1204
|
CSCD被引
5
次
|
|
|
|
19.
孔勇. 以RF/SiO_2复合气凝胶为前驱体制备介孔α-SiC.
无机化学学报,2012,28(10):2071-2076
|
CSCD被引
4
次
|
|
|
|
20.
Mirzapour A. Effect of nanosilica on the microstructure,thermal properties and bending strength of nanosilica modified carbon fiber/phenolic nanocomposite.
Composites Part A,2014,63:159-167
|
CSCD被引
7
次
|
|
|
|
|