帮助 关于我们

返回检索结果

基于动力学匹配原则构筑高性能锂离子电容器
High performance lithium-ion capacitors based on dynamic matching principle

查看参考文献35篇

程靖康 1   张云龙 1   晁会霞 1   黄运春 1   覃海权 1   曹林芳 1   滕晓玲 1   胡涵 1,2,3 *   吴明铂 1,2,3  
文摘 锂离子电容器作为新一代电化学储能系统,结合高能量和高功率密度的优势,满足多功能电子设备和电网侧储能的迫切需求。然而,电池型负极和电容型正极之间的动力学不匹配严重制约了其电化学性能。为解决这一瓶颈,制备一种高性能双碳锂离子电容器,该器件采用乙二胺四乙酸铁钠盐(EDTA-Na-Fe)衍生而成的碳材料同时作为正、负极。通过简单的煅烧,EDTA-Na-Fe可直接转化为氮掺杂碳骨架(NCF),该碳骨架具有较高的可逆容量和良好的电化学性能。使用NCF同时作为锂离子电容器的正、负极,能够在0.5~4.0V的电压区间工作,并且由于使用同样的正负极材料,简化器件的构筑流程;在225W·kg~(-1)的功率密度下,所构筑器件的能量密度能达到193.4Wh·kg~(-1)。这种合理的动力学匹配策略为进一步发展高性能锂离子电容器开辟一条新的途径。
其他语种文摘 As a new generation of energy storage devices,lithium-ion capacitors (LICs)rationally combine high energy density and high power density,providing an alternative solution for multifunctional electronic equipment and state grid system.However,the dynamic mismatch between the battery-type anode and the capacitor-type cathode seriously limits its development and application. Herein, a high performance LIC simultaneously using carbon materials derived from Ethylenediaminetetraacetic Acid Ferric Sodium Salt(EDTA-Na-Fe)was prepared.By calcination of EDTA-Na-Fe in an inert atmosphere,nitrogen-doped carbon frameworks (NCF)can be obtained which possess a high reversible capacity and excellent rate-capability.Using this NCF as the anode and cathode of the LICs,the hybrid devices with a wide voltage window of 0.5-4.0Vare obtained. The employment of the same materials as the anode and cathode can largely simplify the fabrication process.The energy density of LICs can reach 193.4Wh·kg~(-1) at a power density of 225W·kg~(-1). This reasonable dynamic matching strategy can be helpful for the application of LICs.
来源 材料工程 ,2023,51(6):29-37 【核心库】
DOI 10.11868/j.issn.1001-4381.2021.000015
关键词 锂离子电容器 ; 动力学匹配 ; 氮掺杂碳骨架 ; 高能量密度
地址

1. 中国石油大学(华东), 重质油国家重点实验室, 山东, 青岛, 266580  

2. 中国石油大学(华东)化学工程学院, 山东, 青岛, 266580  

3. 中国石油大学(华东)新能源研究院, 山东, 青岛, 266580

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 化学
基金 国家自然科学基金项目 ;  山东省自然科学基金
文献收藏号 CSCD:7505501

参考文献 共 35 共2页

1.  Naoi K. New generation“nanohybrid supercapacitor”. Accounts of Chemical Research,2013,46:1075-1083 CSCD被引 35    
2.  Han P. Lithium ion capacitors in organic electrolyte system:scientific problems,material development, and key technologies. Advanced Energy Materials,2018,8:1801243 CSCD被引 25    
3.  Wang H W. Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Advanced Materials,2017,29:1702093 CSCD被引 73    
4.  Zhang M. Rechargeable batteries based on anion intercalation graphite cathodes. Energy Storage Materials,2019,16:65-84 CSCD被引 18    
5.  Zheng S H. Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors. Energy Storage Materials,2017,6:70-97 CSCD被引 37    
6.  Shen L F. Peapod-like Li3VO_4/Ndoped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium-ion capacitors. Advanced Materials,2017,29:1700142 CSCD被引 8    
7.  Wang R. Fast and large lithium storage in 3Dporous vn nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors. Advanced Functional Materials,2015,25:2270-2278 CSCD被引 33    
8.  Aravindan V. Insertiontype electrodes for nonaqueous Li-ion capacitors. Chemical Reviews,2014,114:11619-11635 CSCD被引 46    
9.  Lang J W. Research progress in nonaqueous lithium/sodium-ion capacitors. Scientia Sinica Chimica,2018,48:1478-1513 CSCD被引 1    
10.  Jiang J M. Highly stable lithium ion capacitor enabled by hierarchical polyimide derived carbon microspheres combined with 3Dcurrent collectors. Journal of Materials Chemistry:A,2017,5:23283-23291 CSCD被引 8    
11.  Yu X L. Ultrahigh-rate and highdensity lithium-ion capacitors through hybriding nitrogen-enriched hierarchical porous carbon cathode with prelithiated nnicrocrystalline graphite anode. Nano Energy,2015,15:43-53 CSCD被引 14    
12.  Wu H. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Letters,2012,12:904-909 CSCD被引 46    
13.  Wu Q L. Ultrathin anatase TiO_2 nanosheets embedded with TiO_2-B nanodomains for lithium-ion storage:capacity enhancement by phase boundaries. Advanced Energy Materials,2015,5:1401756 CSCD被引 18    
14.  Yu P. Binder-free 2Dtitanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale,2018,10:5906-5913 CSCD被引 27    
15.  Zou G Q. Advanced hierar-chical vesicular carbon co-doped with S,P,N for high-rate sodium storage. Advanced Science,2018,5:1800241 CSCD被引 7    
16.  Yang C H. A renewable natural cotton derived and nitrogen/sulfur co-doped carbon as a highperformance sodium ion battery anode. Materials Today Energy,2018,8:37-44 CSCD被引 6    
17.  Inagaki M. Nitrogendoped carbon materials. Carbon,2018,132:104-140 CSCD被引 33    
18.  Sun F. In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5Vfullcarbon lithium-ion capacitor. Nano Letters,2018,18:3368-3376 CSCD被引 16    
19.  Li Z. Mesh-like carbon nanosheets with high-level nitrogen doping for high-energy dual-carbon lithium-ion capacitors. Small,2019,15:1805173 CSCD被引 10    
20.  Yang B J. 3Dnitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Materials,2019,23:522-529 CSCD被引 28    
引证文献 1

1 钟存贵 高性能镍钴磷化物的制备及其在超级电容器中的应用 材料工程,2024,52(7):225-233
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号