基于动力学匹配原则构筑高性能锂离子电容器
High performance lithium-ion capacitors based on dynamic matching principle
查看参考文献35篇
文摘
|
锂离子电容器作为新一代电化学储能系统,结合高能量和高功率密度的优势,满足多功能电子设备和电网侧储能的迫切需求。然而,电池型负极和电容型正极之间的动力学不匹配严重制约了其电化学性能。为解决这一瓶颈,制备一种高性能双碳锂离子电容器,该器件采用乙二胺四乙酸铁钠盐(EDTA-Na-Fe)衍生而成的碳材料同时作为正、负极。通过简单的煅烧,EDTA-Na-Fe可直接转化为氮掺杂碳骨架(NCF),该碳骨架具有较高的可逆容量和良好的电化学性能。使用NCF同时作为锂离子电容器的正、负极,能够在0.5~4.0V的电压区间工作,并且由于使用同样的正负极材料,简化器件的构筑流程;在225W·kg~(-1)的功率密度下,所构筑器件的能量密度能达到193.4Wh·kg~(-1)。这种合理的动力学匹配策略为进一步发展高性能锂离子电容器开辟一条新的途径。 |
其他语种文摘
|
As a new generation of energy storage devices,lithium-ion capacitors (LICs)rationally combine high energy density and high power density,providing an alternative solution for multifunctional electronic equipment and state grid system.However,the dynamic mismatch between the battery-type anode and the capacitor-type cathode seriously limits its development and application. Herein, a high performance LIC simultaneously using carbon materials derived from Ethylenediaminetetraacetic Acid Ferric Sodium Salt(EDTA-Na-Fe)was prepared.By calcination of EDTA-Na-Fe in an inert atmosphere,nitrogen-doped carbon frameworks (NCF)can be obtained which possess a high reversible capacity and excellent rate-capability.Using this NCF as the anode and cathode of the LICs,the hybrid devices with a wide voltage window of 0.5-4.0Vare obtained. The employment of the same materials as the anode and cathode can largely simplify the fabrication process.The energy density of LICs can reach 193.4Wh·kg~(-1) at a power density of 225W·kg~(-1). This reasonable dynamic matching strategy can be helpful for the application of LICs. |
来源
|
材料工程
,2023,51(6):29-37 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000015
|
关键词
|
锂离子电容器
;
动力学匹配
;
氮掺杂碳骨架
;
高能量密度
|
地址
|
1.
中国石油大学(华东), 重质油国家重点实验室, 山东, 青岛, 266580
2.
中国石油大学(华东)化学工程学院, 山东, 青岛, 266580
3.
中国石油大学(华东)新能源研究院, 山东, 青岛, 266580
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
化学 |
基金
|
国家自然科学基金项目
;
山东省自然科学基金
|
文献收藏号
|
CSCD:7505501
|
参考文献 共
35
共2页
|
1.
Naoi K. New generation“nanohybrid supercapacitor”.
Accounts of Chemical Research,2013,46:1075-1083
|
CSCD被引
35
次
|
|
|
|
2.
Han P. Lithium ion capacitors in organic electrolyte system:scientific problems,material development, and key technologies.
Advanced Energy Materials,2018,8:1801243
|
CSCD被引
25
次
|
|
|
|
3.
Wang H W. Nonaqueous hybrid lithium-ion and sodium-ion capacitors.
Advanced Materials,2017,29:1702093
|
CSCD被引
73
次
|
|
|
|
4.
Zhang M. Rechargeable batteries based on anion intercalation graphite cathodes.
Energy Storage Materials,2019,16:65-84
|
CSCD被引
18
次
|
|
|
|
5.
Zheng S H. Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors.
Energy Storage Materials,2017,6:70-97
|
CSCD被引
37
次
|
|
|
|
6.
Shen L F. Peapod-like Li3VO_4/Ndoped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium-ion capacitors.
Advanced Materials,2017,29:1700142
|
CSCD被引
8
次
|
|
|
|
7.
Wang R. Fast and large lithium storage in 3Dporous vn nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors.
Advanced Functional Materials,2015,25:2270-2278
|
CSCD被引
33
次
|
|
|
|
8.
Aravindan V. Insertiontype electrodes for nonaqueous Li-ion capacitors.
Chemical Reviews,2014,114:11619-11635
|
CSCD被引
46
次
|
|
|
|
9.
Lang J W. Research progress in nonaqueous lithium/sodium-ion capacitors.
Scientia Sinica Chimica,2018,48:1478-1513
|
CSCD被引
1
次
|
|
|
|
10.
Jiang J M. Highly stable lithium ion capacitor enabled by hierarchical polyimide derived carbon microspheres combined with 3Dcurrent collectors.
Journal of Materials Chemistry:A,2017,5:23283-23291
|
CSCD被引
8
次
|
|
|
|
11.
Yu X L. Ultrahigh-rate and highdensity lithium-ion capacitors through hybriding nitrogen-enriched hierarchical porous carbon cathode with prelithiated nnicrocrystalline graphite anode.
Nano Energy,2015,15:43-53
|
CSCD被引
14
次
|
|
|
|
12.
Wu H. Engineering empty space between Si nanoparticles for lithium-ion battery anodes.
Nano Letters,2012,12:904-909
|
CSCD被引
46
次
|
|
|
|
13.
Wu Q L. Ultrathin anatase TiO_2 nanosheets embedded with TiO_2-B nanodomains for lithium-ion storage:capacity enhancement by phase boundaries.
Advanced Energy Materials,2015,5:1401756
|
CSCD被引
18
次
|
|
|
|
14.
Yu P. Binder-free 2Dtitanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors.
Nanoscale,2018,10:5906-5913
|
CSCD被引
27
次
|
|
|
|
15.
Zou G Q. Advanced hierar-chical vesicular carbon co-doped with S,P,N for high-rate sodium storage.
Advanced Science,2018,5:1800241
|
CSCD被引
7
次
|
|
|
|
16.
Yang C H. A renewable natural cotton derived and nitrogen/sulfur co-doped carbon as a highperformance sodium ion battery anode.
Materials Today Energy,2018,8:37-44
|
CSCD被引
6
次
|
|
|
|
17.
Inagaki M. Nitrogendoped carbon materials.
Carbon,2018,132:104-140
|
CSCD被引
33
次
|
|
|
|
18.
Sun F. In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5Vfullcarbon lithium-ion capacitor.
Nano Letters,2018,18:3368-3376
|
CSCD被引
16
次
|
|
|
|
19.
Li Z. Mesh-like carbon nanosheets with high-level nitrogen doping for high-energy dual-carbon lithium-ion capacitors.
Small,2019,15:1805173
|
CSCD被引
10
次
|
|
|
|
20.
Yang B J. 3Dnitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor.
Energy Storage Materials,2019,23:522-529
|
CSCD被引
28
次
|
|
|
|
|