基于里奥滤光器的太阳窄带观测系统全视场频率漂移高精度测量方法(特邀)
High Precision Measurement Method of Wavelength Drift in Full Field of View for Solar Narrow Band Observation System Based on Lyot Filter(Invited)
查看参考文献20篇
王希群
1,2,3,4
吕卓
1,2,3,4
王远方舟
1,2,3,4
付玉
1,3,4
谭旭
1,2,3,4
金振宇
1,3,4
*
文摘
|
针对地基大口径太阳望远镜的基于里奥滤光器的太阳窄带观测系统存在的频率漂移问题,提出了在线全视场频率漂移测量方法,并在NVST高分辨太阳光球观测实验系统进行了实测验证。实测表明,对全视场的频率漂移测量误差RMS小于0.1 pm。利用该方法测得的系统频率漂移可用于校正磁像仪的全视场频率漂移,提高太阳大气的磁场和速度场测量精度。 |
其他语种文摘
|
The measurement and study of the Sun's magnetic field is an important branch of solar physics,most of the Sun's phenomena and processes are closely related to the magnetic of the Sun.Magnetograph is a solar narrowband observation system based on tunable filters.The magnetograph can measure the magnetic field and velocity field of the solar atmosphere with high accuracy and is a piece of important observation equipment for solar physics research.Due to processing and assembly errors and incidence angles in different fields of view,the central wavelength of the solar narrowband observation system will deviate from the calibrated wavelength,which is called wavelength drift.The wavelength drift of the observation system seriously affects the accuracy of the magnetic field and velocity field measurement.The wavelength drift must be measured accurately and corrected during the measurement of the magnetic field and velocity field.The wavelength drift is different for different fields of view.To achieve high-precision measurement of the magnetic field and velocity field,it is necessary to precisely measure the wavelength drift in the full field of view.Aiming at the wavelength drift problem of the narrowband solar observation system based on the Lyot filter of ground-based large aperture solar telescope,this paper proposes an online full-field wavelength drift measurement method.This method can realize the high-precision measurement of wavelength drifts in the full field of view without changing the structure of the observation system.Online measurement of system wavelength drift refers to scanning the system spectral lines based on the existing configuration of the observation system to obtain spectral profiles at each field of view.The line center of the field of view can be obtained by fitting the spectral profiles of different fields.The method of obtaining system wavelength by spectral profile scanning is an algorithm based on the light intensity.The fluctuation of light intensity at one field of view will affect the wavelength drift measurement here.The structure of the solar atmosphere and the change of atmospheric transmittance are two important reasons for the fluctuation of light intensity in data acquisition.The spatial structure of the solar atmosphere will shake irregularly in the field of view due to telescope tracking errors and atmospheric turbulence.The method in this paper can eliminate the light intensity error caused by these factors and improve the wavelength drift measurement accuracy.Firstly,control the telescope to point to different positions in the quiet area of the solar disk center,and acquire the data of each wavelength by flat field mode.The average of multi frame images can smooth out the solar atmospheric structure and reduce the error caused by these structures.Secondly,synchronous acquisition of light intensity of broadband channels can correct narrowband image intensity frame by frame.Finally,the scanning spectral profile will be obtained for each field of view.The Gaussian fitting method can obtain the wavelength drift result from the scanning spectral profile.We have carried out the experimental verification in the high-resolution solar photosphere observation system of the 1 m New Vacuum Solar Telescope (NVST) in the Fuxian Solar Observatory (FSO).The field of view of the experimental system is 102 ″.We observed 11 wavelength points of ±6 pm centered on 5 324.191 nm.And we acquired 10 images at each wavelength point 15 times.The experimental results show that:in the 102 ″ field of view,the static error amplitude of full field wavelength drift is 1.6 pm;the wavelength drift distribution in the field of view is close to the sphere;the mean wavelength drift redshifts gradually throughout the day. |
来源
|
光子学报
,2023,52(5):0552207 【核心库】
|
DOI
|
10.3788/gzxb20235205.0552207
|
关键词
|
频率漂移
;
滤光器
;
太阳磁场测量
;
同步采集
;
在线测量
;
多光谱成像
|
地址
|
1.
中国科学院云南天文台, 昆明, 650011
2.
中国科学院大学, 北京, 100049
3.
云南省太阳物理与空间目标监测重点实验室, 云南省太阳物理与空间目标监测重点实验室, 昆明, 650011
4.
云南省应用天文技术工程实验室, 云南省应用天文技术工程实验室, 昆明, 650011
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
云南省科技领军人才项目
;
云南省科技入滇项目
|
文献收藏号
|
CSCD:7502082
|
参考文献 共
20
共1页
|
1.
艾国祥. 双折射滤光器及其在天文学中的应用.
天文学进展,1987,5(4):317-329
|
CSCD被引
4
次
|
|
|
|
2.
Scherrer P H. The Helioseismic and Magnetic Imager(HMI) Investigation for the Solar Dynamics Observatory(SDO).
Solar Physics,2012,275(2):207-227
|
CSCD被引
27
次
|
|
|
|
3.
Deng Yuanyong. Design of the Full-disk Magneto Graph (FMG) onboard the ASO-S.
Research in Astronomy and Astrophysics,2019,19(11):11-22
|
CSCD被引
2
次
|
|
|
|
4.
艾国祥. 太阳磁场望远镜.
云南天文台台刊,1989,13(S1):5-7
|
CSCD被引
1
次
|
|
|
|
5.
艾国祥. 太阳磁场望远镜的工作原理.
天文学报,1986(2):173-180
|
CSCD被引
14
次
|
|
|
|
6.
Goode P R. The 1.6 m off-axis New Solar Telescope (NST) in big bear.
International Society for Optics and Photonics,2012
|
CSCD被引
1
次
|
|
|
|
7.
Cao W. Scientific instrumentation for the 1.6 m new solar telescope in big bear.
Astronomische Nachrichten,2010,331(6):636-639
|
CSCD被引
26
次
|
|
|
|
8.
Scharmer G B. The 1-meter Swedish solar telescope.
Proceedings of SPIE. 4853(3),2003:341-350
|
CSCD被引
1
次
|
|
|
|
9.
Van Noort M J. Stokes imaging polarimetry using image restoration at the Swedish 1-m solar telescope.
Astronomy and Astrophysics,2008,489(1):429-440
|
CSCD被引
6
次
|
|
|
|
10.
Balthasar H. GREGOR: the new german solar telescope.
Astrophysics,2007,368(3):605-610
|
CSCD被引
1
次
|
|
|
|
11.
Denker C. Instrument and data analysis challenges for imaging spectropolarimetry.
Astronomische Nachrichten,2010,331(6):648-651
|
CSCD被引
1
次
|
|
|
|
12.
Couvidat S. Observables processing for the helioseismic and magnetic imager instrument on the solar dynamics observatory.
Solar Physics,2016,291(7):1887-1938
|
CSCD被引
4
次
|
|
|
|
13.
Cao W. NIRIS: the second generation near-infrared imaging spectro-polarimeter for the 1.6 meter new solar telescope.
Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona,2012:291
|
CSCD被引
1
次
|
|
|
|
14.
徐稚. 抚仙湖一米红外太阳望远镜Ha窄带滤光器扫描轮廓的检测与修正.
天文研究与技术,2014,11(3):239-246
|
CSCD被引
6
次
|
|
|
|
15.
王良凯. NVST高分辨窄带成像系统视场频漂的实测与分析.
天文研究与技术,2018,15(4):8-17
|
CSCD被引
1
次
|
|
|
|
16.
王佳. 一种里奥滤光器在线标定方法.
光电工程,2020,47(9):8-19
|
CSCD被引
1
次
|
|
|
|
17.
Couvidat S. Wavelength dependence of the Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory(SDO).
Solar Physics,2011,275(1/2):285-325
|
CSCD被引
1
次
|
|
|
|
18.
Liu Zhong. New vacuum solar telescope and observations with high resolution.
Research in Astronomy and Astrophysics,2014(6):705-718
|
CSCD被引
83
次
|
|
|
|
19.
王瑞. 新真空太阳望远镜多波段高分辨率成像系统的视场定标.
光学学报,2018,38(1):11-20
|
CSCD被引
1
次
|
|
|
|
20.
Title A M. Improvements in birefringent filters. 5: Field of view effects.
Applied Optics,1979,18(20):3443-3456
|
CSCD被引
9
次
|
|
|
|
|