西昆仑大红柳滩-白龙山矿集区锂矿成矿特征与成矿规律初探
Geological characteristics and metallogenic regularity of lithium deposits in Dahongliutan-Bailongshan area,West Kunlun,China
查看参考文献60篇
文摘
|
大红柳滩-白龙山一带是西昆仑-喀喇昆仑花岗伟晶岩分布最为集中、稀有金属矿化最好的地区。通过多年的研究,本文对大红柳滩-白龙山矿集区21个锂多金属矿床进行了全面系统的梳理,将矿集区划分为大红柳滩矿田和白龙山矿田。矿集区内赋矿地层巴颜喀拉山群的形成时代为214 ~ 223Ma,花岗岩岩体年龄208 ~ 214Ma,不含矿伟晶岩年龄为210 ~ 213Ma,含矿伟晶岩年龄为206 ~213Ma,反映出稀有金属矿产与中生代岩浆岩具有耦合关系。成矿母岩(二云母花岗岩、黑云母花岗岩等)演化后期分异的含锂稀有金属伟晶岩脉沿着片理化带或构造薄弱地段就位成矿,成矿空间为距离中酸性岩体500 ~2000m的巴颜喀拉山群(或康西瓦岩群)地层中,符合构造-岩浆-层位"三位一体"控矿规律。同时,项目组将大红柳滩-白龙山矿集区从北至南划分为5个稀有金属矿化伟晶岩脉群带,分别为:阿克萨依稀有金属矿化伟晶岩脉群带、大红柳滩北稀有金属矿化伟晶岩脉群带、大红柳滩南稀有金属矿化伟晶岩脉群带、白龙山-雪凤岭锂矿化伟晶岩脉群带、俘虏沟-双牙锂矿化伟晶岩脉群带。其中,白龙山-雪凤岭锂矿化伟晶岩脉群带长约18km,俘虏沟-双牙锂矿化伟晶岩脉群带长约25km,这2个带呈南北对称分带。而俘虏沟-双牙锂矿化伟晶岩脉群带显示了巨大的找矿潜力,是下一步找矿的重要地段。 |
其他语种文摘
|
Dahongliutan-Bailongshan area is the most important rare-metal concentration area in the West Kunlun-Karakorum where there are most concentrated granite pegmatites and most developed rare-metal mineralization. This paper comprehensively and systematically surmurized 21 lithium polymetallic deposits in this area based on the achievements of years of research,and divided the ore concentration area into the Dahongliutan ore field and Bailongshan ore field. The ore-bearing strata in the ore concentration area is the Bayankela Group,whose formation age is 214 ~223Ma. Meanwhile,the age of granite rock mass is 208 ~214Ma,the ages of nonore pegmatites and the ore-bearing pegmatites are 210 ~213Ma and 206 ~213Ma,respectively,which reflects the coupling relationship between the rare metal minerals and the Mesozoic magmatic rocks. The Li-bearing rare metal pegmatite veins formed by differentiation of the ore-forming parent rocks(biotite granite,biotite granite,etc. )in the late evolutionary stage are distributed in schistose zone or structurally weak area 500 ~2000m away from the intermediate-acid rock mass in the ore-forming strata of the Bayankala Group(or Kangxiwa Group),which conforms to the "trinity"ore-controlling law of structure-magma-horizon. At the same time,the project team divided the Dahongliutan-Bailongshan ore concentration area into five rare-metal mineralized pegmatite vein group belts from north to south,namely,the Aksayi rare-metal mineralized pegmatite vein group belt,the Dahongliutan north rare-metal mineralized pegmatite vein group belt,the Dahongliutan south rare-metal mineralized pegmatite vein group belt,the Bailongshan-Xuefengling lithium mineralized pegmatite vein group belt and the Fulugou-Shuangya lithium mineralized pegmatite vein group belt. Among them,the Bailongshan-Xuefengling and the Fulugou-Shuangya lithium mineralized pegmatite vein group belts are about 18km and 25km long, respectively,which are symmetrically zoned in the north and south of this area. The Fulugou-Shuangya lithium mineralized pegmatite vein group belt shows great prospecting potential,so it is an important belt for the next prospecting. |
来源
|
岩石学报
,2023,39(7):1931-1949 【核心库】
|
DOI
|
10.18654/1000-0569/2023.07.04
|
关键词
|
锂矿
;
伟晶岩
;
矿化伟晶岩脉群带
;
成矿规律
;
大红柳滩
;
白龙山
;
西昆仑
|
地址
|
1.
中国科学院广州地球化学研究所, 广州, 510640
2.
中国科学院大学, 北京, 100049
3.
新疆自然资源与生态环境研究中心, 乌鲁木齐, 830000
4.
中国科学院地球化学研究所, 贵阳, 550002
5.
新疆维吾尔自治区有色地质勘查局地质矿产勘查研究院, 乌鲁木齐, 830000
6.
新疆昆仑蓝钻矿业开发有限责任公司, 和田, 848012
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0569 |
学科
|
地质学 |
基金
|
第二次青藏高原综合科学考察
;
国家重点研发计划项目
;
国家自然科学基金项目
;
新疆维吾尔自治区科技重大专项、重点研发专项
|
文献收藏号
|
CSCD:7500270
|
参考文献 共
60
共3页
|
1.
Benson T R. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins.
Nature Communications,2017,8:270
|
CSCD被引
50
次
|
|
|
|
2.
Hu J. Geological characteristics and age of the Dahongliutan Fe-ore deposit in the western Kunlun orogenic belt,Xinjiang,northwestern China.
Journal of Asian Earth Sciences,2016,116:1-25
|
CSCD被引
30
次
|
|
|
|
3.
Hu J. Geochemistry and origin of the Neoproterozoic Dahongliutan banded iron formation (BIF)in the western Kunlun orogenic belt,Xinjiang (NW China).
Ore Geology Reviews,2017,89:836-857
|
CSCD被引
3
次
|
|
|
|
4.
Ji W H. The discovery of Palaeoproterozoic volcanic rocks in the Bulunkuoler Group from the Tianshuihai Massif in Xinjiang of Northwest China and its geological significance.
Science China (Earth Sciences),2011,54(1):61-72
|
CSCD被引
25
次
|
|
|
|
5.
Jiang Y H. Origin of Middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen,Northwest China:A record of the closure of Paleo-Tethys.
Lithos,2013,156/159:13-30
|
CSCD被引
65
次
|
|
|
|
6.
Li J K. A review of niobium and tantalum metallogenic regularity in China.
Chinese Science Bulletin,2019,64(15):1545-1566
|
CSCD被引
5
次
|
|
|
|
7.
Liu X Q. Triassic-Jurassic granitoids and pegmatites from Western Kunlun-Pamir Syntax:Implications for the Paleo-Tethys evolution at the northern margin of the Tibetan Plateau.
Lithosphere,2020:7282037
|
CSCD被引
6
次
|
|
|
|
8.
Wang H. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be)rare-metal pegmatite deposit,West Kunlun orogenic belt,NW China.
Lithos,2020,360/361:105449
|
CSCD被引
60
次
|
|
|
|
9.
Wang J. Shoshonitic-and adakitic magmatism of the Early Paleozoic age in the western Kunlun orogenic belt,NW China:Implications for the early evolution of the northwestern Tibetan Plateau.
Lithos,2017,286/287:345-362
|
CSCD被引
9
次
|
|
|
|
10.
Xiao W J. Carboniferous-Triassic subduction and accretion in the western Kunlun,China:Implications for the collisional and accretionary tectonics of the northern Tibetan Plateau.
Geology,2002,30(4):295-298
|
CSCD被引
52
次
|
|
|
|
11.
Xiao W J. Multiple accretionary orogenesis and episodic growth of continents: Insights from the Western Kunlun Range,central Asia.
International Geology Review,2003,45(4):303-328
|
CSCD被引
32
次
|
|
|
|
12.
Xiao W J. Accretionary tectonics of the Western Kunlun Orogen,China: A Paleozoic-Early Mesozoic,long-lived active continental margin with implications for the growth of southern Eurasia.
The Journal of Geology,2005,113(6):687-705
|
CSCD被引
93
次
|
|
|
|
13.
Yan Q H. Age of the Dahongliutan rare metal pegmatite deposit,West Kunlun,Xinjiang (NW China):Constraints from LAICP-MS U-Pb dating of columbite-(Fe)and cassiterite.
Ore Geology Reviews,2018,100:561-573
|
CSCD被引
46
次
|
|
|
|
14.
Yan Q H. Recognition of a 600-km-long Late Triassic rare metal (Li-Rb-Be-Nb-Ta)pegmatite belt in the western Kunlun orogenic belt, western China.
Economic Geology,2022,117(1):213-236
|
CSCD被引
30
次
|
|
|
|
15.
Yuan C. Nb-depleted, continental rift-related Akaz metavolcanic rocks (West Kunlun): Implication for the rifting of the Tarim craton from Gondwana.
Geological Society,London,Special Publications,226(1),2004:131-143
|
CSCD被引
1
次
|
|
|
|
16.
Yuan C. Geochemistry and petrogenesis of the Yishak volcanic sequence,Kudi ophiolite, West Kunlun (NW China):Implications for the magmatic evolution in a subduction zone environment.
Contributions to Mineralogy and Petrology,2005,150(2):195-211
|
CSCD被引
12
次
|
|
|
|
17.
Zhang C L. Tectonic evolution of the NE section of the Pamir Plateau:New evidence from field observations and zircon U-Pb geochronology.
Tectonophysics,2018,723:27-40
|
CSCD被引
21
次
|
|
|
|
18.
Zhang C L. Tectonic evolution of the West Kunlun Orogenic Belt along the northern margin of the Tibetan Plateau:Implications for the assembly of the Tarim terrane to Gondwana.
Geoscience Frontiers,2019,10(3):973-988
|
CSCD被引
18
次
|
|
|
|
19.
Zhang X Y. Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution.
Ore Geology Reviews,2022,150:105178
|
CSCD被引
3
次
|
|
|
|
20.
Zhou J S. Geochronology,petrology, and lithium isotope geochemistry of the Bailongshan granite-pegmatite system,northern Tibet:Implications for the ore-forming potential of pegmatites.
Chemical Geology,2021,584:120484
|
CSCD被引
22
次
|
|
|
|
|