应变速率对TC17和TC4钛合金锻件力学性能的影响
Effect of strain rate on mechanical properties of TC17 and TC4 alloy forgings
查看参考文献27篇
文摘
|
利用拉伸试验机研究不同应变速率对TC17和TC4钛合金锻件力学性能的影响,并利用Vickers硬度计、 OM、SEM、EBSD等对两种钛合金的维氏硬度、变形组织以及断口形貌进行研究。结果表明:随着应变速率的增加,两种钛合金的强度升高而伸长率降低,均表现出正流变应力的应变速率敏感性,且应变速率敏感性系数随真应变增加呈现下降趋势;在相同应变速率下,除合金元素的固溶强化外,TC17钛合金网篮组织中板条状α相与残余β相交错排列,导致相界面多,位错容易在相界面塞积且位错运动的平均自由行程较短,合金的强度较高;另外,微孔易在相界面处大量形核,导致断口韧窝尺寸较小且数目较多,合金的塑性较差;TC4钛合金双态组织中等轴初生α相具有较好的协调变形能力,且β转变组织中的次生α相排列较为规则,导致相界面较少,降低了对位错运动的阻碍作用,韧窝尺寸较大且数目较少,合金的强度较低而塑性较好。 |
其他语种文摘
|
α+β titanium alloys have a wide application prospect in aero engine blisk manufacturing, owing to their high specific strength and good high-temperature performance. Whereas there are few studies on mechanical properties and plastic deformation modes of large-size blisk specimens at variable strain rate conditions. In this work, the effects of different strain rates on the mechanical properties of forged TC17 and TC4 alloys were examined by tensile testing machine, and Vickers hardness tester, OM, SEM, and EBSD were used to study the Vickers hardness, deformation microstructures and fracture morphologies. As increasing strain rate, the strengths of both alloys increase and the elongation decrease, showing positive strain rate sensitivities of flow stress, and the strain rate sensitivity coefficients decrease with true strain. Besides the solid solution strengthening of alloying elements, lath α-phases and residual β-phases in TC17 alloy with basket-weave microstructure are interweaved with each other, resulting in more phase interfaces. Phase interfaces are effective in blocking dislocations motion and lead to pile-up of dislocations, improving the strength of TC17 alloy. In addition, the voids are easier to nucleate at the phase interfaces and form dimples. Therefore, a lot of small dimples are observed on the fracture surface, which make the poorer ductility of TC17 alloy. Fewer phase interfaces exist in TC4 alloy with bimodal microstructure, which is related to the better plastic deformation capacity of equiaxed primary α-phases and the regular arrangement of secondary α-phases in transformed β-phases. The fewer phase interfaces increase the mean free path of dislocations and form fewer large dimples, which lead to a decrease in strength but an increase in ductility of TC4 alloy. |
来源
|
航空材料学报
,2023,43(3):49-59 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2022.000187
|
关键词
|
整体叶盘
;
α+β 型钛合金
;
应变速率
;
变形组织
;
断口形貌
|
地址
|
1.
大连理工大学材料科学与工程学院, 辽宁, 大连, 116024
2.
中国航发沈阳发动机研究所, 辽宁省航空发动机冲击动力学重点实验室, 沈阳, 110042
3.
西北工业大学民航学院, 西安, 710072
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
辽宁省航空发动机冲击动力学重点实验室开放基金项目
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:7495486
|
参考文献 共
27
共2页
|
1.
王增强. 先进航空发动机关键制造技术.
航空制造技术,2015(22):34-38
|
CSCD被引
11
次
|
|
|
|
2.
Fu Y Z. Machining the Integral Impeller and Blisk of Aero-Engines: A Review of Surface Finishing and Strengthening Technologies.
Chinese Journal of Mechanical Engineering,2017,30(3):528-543
|
CSCD被引
10
次
|
|
|
|
3.
蔡建明. 航空发动机用先进高温钛合金材料技术研究与发展.
材料工程,2016,44(8):1-10
|
CSCD被引
57
次
|
|
|
|
4.
黄张洪. 航空用钛及钛合金的发展及应用.
材料导报,2011,25(1):102-107
|
CSCD被引
57
次
|
|
|
|
5.
Zhang X S. Recent advances in the development of aerospace materials.
Progress in Aerospace Sciences,2018,97:22-34
|
CSCD被引
43
次
|
|
|
|
6.
刘世锋. 钛合金及钛基复合材料在航空航天的应用和发展.
航空材料学报,2020,40(3):77-94
|
CSCD被引
71
次
|
|
|
|
7.
蔡建明. 600℃高温钛合金双性能整体叶盘锻件制备技术研究进展.
材料工程,2018,46(5):36-43
|
CSCD被引
9
次
|
|
|
|
8.
蔡建明. 先进航空发动机用高温钛合金双性能整体叶盘的制造.
航空制造技术,2019,62(19):34-40
|
CSCD被引
6
次
|
|
|
|
9.
李祚军. 线性摩擦焊接钛合金整体叶盘研制与实验研究.
航空材料学报,2020,40(4):71-76
|
CSCD被引
6
次
|
|
|
|
10.
Guo P. The effect of microstructure on the mechanical properties of TC4-DT titanium alloys.
Materials Science and Engineering: A,2013,563:106-111
|
CSCD被引
27
次
|
|
|
|
11.
Li C L. A study on the microstructures and tensile properties of new beta high strength titanium alloy.
Journal of Alloys and Compounds,2013,550:23-30
|
CSCD被引
24
次
|
|
|
|
12.
Shi X H. Microstructure evolution and mechanical properties of near-α Ti-8Al-1Mo-1V alloy at different solution temperatures and cooling rates.
Journal of Alloys and Compounds,2017,727:555-564
|
CSCD被引
5
次
|
|
|
|
13.
Liang R. Effect of microstructure on fracture toughness and fatigue crack growth behavior of Ti17 alloy.
Metals,2016,6(8):186
|
CSCD被引
1
次
|
|
|
|
14.
Yamabe-Mitarai Y. Effect of microstructure on tensile properties of Ti-17 alloys forged using a 1500-ton forging simulator.
MATEC Web of Conferences. 321,2020:04014
|
CSCD被引
1
次
|
|
|
|
15.
Mateo A. Welding repair by linear friction in titanium alloys.
Materials Science and Technology,2009,25(7):905-913
|
CSCD被引
5
次
|
|
|
|
16.
李晓红. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响.
材料工程,2020,48(1):115-120
|
CSCD被引
8
次
|
|
|
|
17.
高峻. 航空发动机双性能盘制造技术与机理的研究进展.
航空材料学报,2012,32(6):37-43
|
CSCD被引
10
次
|
|
|
|
18.
Jiao L. Fatigue properties of Ti17 alloy strengthened by combination of electric spark treatment with ultrasonic surface treatment.
Rare Metal Materials and Engineering,2010,39(12):2091-2094
|
CSCD被引
6
次
|
|
|
|
19.
Wu J F. Microstructures and mechanical properties of β forging Ti17 alloy under combined laser shock processing and shot peening.
Surface and Coatings Technology,2017,328:283-291
|
CSCD被引
7
次
|
|
|
|
20.
Sun J Z. Deformation behavior of TC17 titanium alloy with basketweave microstructure during isothermal compression.
Journal of Alloys and Compounds,2018,730:533-543
|
CSCD被引
8
次
|
|
|
|
|