基于原子范数最小化的极化敏感阵列DOA估计
DOA Estimation of Polarization Sensitive Array Based on Atomic Norm Minimization
查看参考文献15篇
文摘
|
为了提高极化敏感阵列中压缩感知类波达方向(Direction Of Arrival,DOA)估计算法的精度,避免网格失配问题,本文使用正交偶极子阵列在原子范数最小化(Atomic Norm Minimization,ANM)的理论基础上提出一种无网格波达方向估计算法.首先,将一维正交偶极子天线接收到的多快拍信号分解为两个子阵再求和,然后通过解决半正定规划问题恢复出一个含有入射信源信息的半正定Toeplitz矩阵,继而对该矩阵进行Vandermonde分解,恢复入射信源的DOA信息.同时结合协方差矩阵的向量化结果和最小二乘法计算得到入射信源的极化辅助角和极化相位角信息.通过仿真实验,在不同快拍数和信噪比下,对比子空间类算法和压缩感知类算法,证明了该算法具有较高的测角精度. |
其他语种文摘
|
In order to improve the accuracy of the compressed sensing direction of arrival (DOA) estimation algorithm in polarization-sensitive arrays and avoid the off-grid problem, this paper proposes a gridless direction estimation algorithm using orthogonal dipole arrays based on the theory of atomic norm minimization (ANM). First, the multi-snapshot signal received by the one-dimensional-orthogonal dipole antenna is decomposed into two sub-arrays to be then added up. Then, a semi-definite programming problem is solved to recover a semi-definite Toeplitz matrix containing the information of the incident source, followed by a Vandermonde decomposition of this matrix to recover the DOA information of incoming. At the same time, the covariance matrix vectorization results and the least-squares method are combined to calculate the polarization angle and polarization phase information. By comparing the subspace algorithm and the compressed sensing algorithm under different snapshot numbers and signal-to-noise ratios through simulation experiments, it is proved that the algorithm has a high accuracy of angle measurement. |
来源
|
电子学报
,2023,51(4):835-842 【核心库】
|
DOI
|
10.12263/DZXB.20220429
|
关键词
|
波达方向估计
;
正交偶极子阵列
;
网格失配
;
原子范数最小化
|
地址
|
哈尔滨工程大学信息与通信工程学院, 黑龙江, 哈尔滨, 150001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7492642
|
参考文献 共
15
共1页
|
1.
Wan L T. DOA and polarization estimation for non-circular signals in 3-D millimeter wave polarized massive MIMO systems.
IEEE Transactions on Wireless Communications,2021,20(5):3152-3167
|
CSCD被引
7
次
|
|
|
|
2.
王琦森. 基于稀疏贝叶斯学习的空间紧邻信号DOA估计算法.
电子与信息学报,2021,43(3):708-716
|
CSCD被引
8
次
|
|
|
|
3.
李槟槟. 分离式长电偶极子稀疏阵列的相干信号多维参数联合估计.
电子与信息学报,2021,43(9):2695-2702
|
CSCD被引
4
次
|
|
|
|
4.
Schmidt R. Multiple emitter location and signal parameter estimation.
IEEE Transactions on Antennas and Propagation,1986,34(3):276-280
|
CSCD被引
1067
次
|
|
|
|
5.
Roy R. ESPRIT-estimation of signal parameters via rotational invariance techniques.
IEEE Transactions on Acoustics, Speech, and Signal Processing,1989,37(7):984-995
|
CSCD被引
547
次
|
|
|
|
6.
Li J. Direction and polarization estimation using arrays with small loops and short dipoles.
IEEE Transactions on Antennas and Propagation,1993,41(3):379-387
|
CSCD被引
28
次
|
|
|
|
7.
梁国龙. 基于稀疏信号重构的近场源定位.
电子学报,2014,42(6):1041-1046
|
CSCD被引
7
次
|
|
|
|
8.
Von Gladiß A. Compressed sensing of the system matrix and sparse reconstruction of the particle concentration in magnetic particle imaging.
IEEE Transactions on Magnetics,2015,51(2):1-4
|
CSCD被引
3
次
|
|
|
|
9.
Baidoo E. Joint DOD and DOA estimation using tensor reconstruction based sparse representation approach for bistatic MIMO radar with unknown noise effect.
Signal Processing,2021,182:107912
|
CSCD被引
6
次
|
|
|
|
10.
Chalise B K. Compressed sensing based joint DOA and polarization angle estimation for sparse arrays with dual-polarized antennas.
2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP),2018:251-255
|
CSCD被引
2
次
|
|
|
|
11.
Chi Y. Sensitivity to basis mismatch in compressed sensing.
IEEE Transactions on Signal Processing,2011,59(5):2182-2195
|
CSCD被引
55
次
|
|
|
|
12.
Bhaskar B N. Atomic norm denoising with applications to line spectral estimation.
IEEE Transactions on Signal Processing,2013,61(23):5987-5999
|
CSCD被引
30
次
|
|
|
|
13.
Tang G G. Compressed sensing off the grid.
IEEE Transactions on Information Theory,2013,59(11):7465-7490
|
CSCD被引
45
次
|
|
|
|
14.
Pan Y. Underdetermined direction-of-arrival estimation with coprime array via atomic norm minimization.
Radio Engineering,2020,29(2):405-413
|
CSCD被引
3
次
|
|
|
|
15.
Yang Z. Vandermonde decomposition of multilevel toeplitz matrices with application to multidimensional super-resolution.
IEEE Transactions on Information Theory,2016,62(6):3685-3701
|
CSCD被引
20
次
|
|
|
|
|