均匀化热处理对5083铝合金难溶相与晶粒尺寸的影响
Effect of homogenization heat treatment on refractory phase and grain size of 5083aluminum alloy
查看参考文献33篇
文摘
|
为研究5083铝合金均匀化过程中难溶相含量、种类以及晶粒尺寸的变化,采用金相显微镜(OM)、扫描电子显微镜(SEM)、能谱仪(EDS)、差示扫描量热仪(DSC)和X射线衍射仪(XRD)对材料组织进行表征。结果表明:铸态5083铝合金中的难溶相由Al(FeMnCr)相、Al(FeMnCr)Si相和Mg_2Si相组成。使用相图计算对铸态组织成分进行验证,结果与实验基本吻合。随着温度从460℃升高至560℃,导电率先升高后降低。这与组织中的弥散相析出和难溶相溶解有关。均匀化制度为540℃/10h,560℃/10h时,难溶相主要以针片状Al(FeMnCr)相为主,Mg_2Si相回溶充分,面积分数分别为0.730%和0.632%,未出现过烧组织的同时,晶内有明显的弥散相粒子析出。因此均匀化温度只有≥540℃才能实现5083铝合金凝固组织中部分难溶相的回溶。提高均匀化温度和延长均匀化时间均会增加晶粒尺寸,当均匀化温度小于540℃时,难溶相变化对晶粒长大影响不大,当均匀化温度大于540℃时,难溶相回溶的同时平均晶粒直径开始大于140μm。 |
其他语种文摘
|
In order to study the changes in the content,type of the refractory phases and grain size during homogenization of the 5083aluminum alloy,material microstructure was characterized by metallographic microscope(OM),scanning electron microscope(SEM),energy dispersive spectrometer (EDS),differential scanning calorimetry(DSC)and X-ray diffractometer(XRD).The results show that the refractory phases in the cast 5083aluminum alloy are composed of Al(FeMnCr)phases, Al(FeMnCr)Si phases and Mg_2Si phases.The composition of the cast state alloy was verified by using phase diagram calculations,and the results are basically consistent with the experiment.As the temperature rises from 460 ℃ to 560 ℃,the electrical conductivity increases firstly and then decreases.This is related to the precipitation of dispersed phase and the dissolution of refractory phase in the structure.When the homogenization processing is 540℃/10h and 560℃/10h,the refractory phase is dominated by the needle-flake Al(FeMnCr)phases,Mg_2Si phases is fully solubilized,the area fractions are 0.730%and 0.632%,respectively,and there is no over burned tissue at the same time,and there are obvious dispersed phase particles in the grain.Therefore,to dissolve part of the refractory phases in cast 5083aluminum alloy,the homogenization temperature must be≥540 ℃. Increasing homogenization temperature and prolonging homogenization time will increase grain size. When the homogenization temperature is less than 540 ℃,the insoluble phase changes have little effect on the grain growth,when the homogenization temperature is greater than 540℃,the average grain size begins to be greater than 140μm,and the refractory phase is dissolved at the same time. |
来源
|
材料工程
,2023,51(4):103-112 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000217
|
关键词
|
均匀化
;
5083铝合金
;
难溶相
;
Al-Mg-Mn
;
差示扫描量热(DSC)
|
地址
|
1.
中南大学轻合金研究院, 长沙, 410083
2.
中南大学机电工程学院, 长沙, 410083
3.
中南大学, 高性能复杂制造国家重点实验室, 长沙, 410083
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
湖南省自然科学基金杰出青年基金
|
文献收藏号
|
CSCD:7480409
|
参考文献 共
33
共2页
|
1.
Vargel C.
Corrosion of aluminium. 2nd ed,2020:469-482
|
CSCD被引
1
次
|
|
|
|
2.
宋鹏程.
新型Al-Mg系船用铝合金的腐蚀行为研究,2020
|
CSCD被引
2
次
|
|
|
|
3.
Kaibyshev R. Superplastic behavior of an Al-Mg alloy at elevated temperatures.
Materials Science and Engineering:A,2003,342(1/2):169-177
|
CSCD被引
18
次
|
|
|
|
4.
Lia Y. The Effect of homogenization on the corrosion behavior of Al-Mg alloy.
Physics of Metals and Metallography,2018,119(4):339-346
|
CSCD被引
3
次
|
|
|
|
5.
Fan L. Revealing foundations of the intergranular corrosion of 5XXX and 6XXX Al alloys.
Materials Letters,2020,271:127767
|
CSCD被引
1
次
|
|
|
|
6.
Williams C L. The role of second phase intermetallic particles on the spall failure of 5083 aluminum.
Journal of Dynamic Behavior of Materials,2016,2(4):476-483
|
CSCD被引
1
次
|
|
|
|
7.
吴楠. 5083合金不同均质制度的组织和性能研究对比.
有色金属加工,2021,50(1):67-70
|
CSCD被引
2
次
|
|
|
|
8.
祖立成. 均匀化退火对5083铝合金再结晶过程的影响.
热加工工艺,2020,49(14):153-156
|
CSCD被引
1
次
|
|
|
|
9.
Grasserbauer J. Influence of Fe and Mn on the microstructure formation in 5xxx alloys-partⅠ:evolution of primary and secondary phase.
Materials,2021,14(12):3204
|
CSCD被引
1
次
|
|
|
|
10.
Engler O. Control of second-phase particles in the Al-Mg-Mn alloy AA5083.
Journal of Alloys and Compounds,2016,689:998-1010
|
CSCD被引
12
次
|
|
|
|
11.
Scheil E. Bemerkungen zur schichtkristallbildung.
International Journal of Materials Research,1942,34(3):70-72
|
CSCD被引
17
次
|
|
|
|
12.
Tiryakioglu M.
Handbook of aluminum,2003:81-211
|
CSCD被引
2
次
|
|
|
|
13.
Algendy A Y. Formation of intermetallic phases during solidification in Al-Mg-Mn 5xxx alloys with various Mg levels.
MATEC Web of Conferences,2020,326:2002
|
CSCD被引
1
次
|
|
|
|
14.
Engler O. Development of intermetallic particles during solidification and homogenization of two AA5xxx series Al-Mg alloys with different Mg contents.
Journal of Alloys and Compounds,2017,728:669-681
|
CSCD被引
3
次
|
|
|
|
15.
李灿. 微量Sr及均匀化工艺对Al-Mg-Si-Cu-Mn变形铝合金铸态组织与性能的影响.
材料工程,2019,47(2):90-98
|
CSCD被引
4
次
|
|
|
|
16.
李泽地.
Al-Mg2Si合金中Mg2Si形貌演变及其腐蚀行为研究,2016
|
CSCD被引
1
次
|
|
|
|
17.
Belov N A.
Multicomponent phase diagrams,2005:133-157
|
CSCD被引
1
次
|
|
|
|
18.
Tijjani A. Effect of yttrium on the microstructure and mechanical properties of A5083secondary aluminum alloy.
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences,2019,62:168-178
|
CSCD被引
1
次
|
|
|
|
19.
Shi J. Microstructures & mechanical properties of 5083alloys with Zn addition.
Materials Research Express,2018,5(6):66503
|
CSCD被引
1
次
|
|
|
|
20.
Li Y J. Precipitation crystallography of plate-shaped Al6(Mn,Fe)dispersoids in AA5182alloy.
Acta Materialia,2012,60(17):5963-5974
|
CSCD被引
11
次
|
|
|
|
|