高性能铝基复合材料研究进展
Research progress in high-performance aluminum matrix composites
查看参考文献125篇
文摘
|
自1960年代以来,全球持续开展了铝基复合材料研究,研发了损伤容限型、耐蚀型、高强型、耐热型、低膨胀型等一系列高性能铝基复合材料。这些复合材料已应用于航空、航天、电子和交通领域。然而,与传统金属材料和树脂基复合材料相比,目前高性能铝基复合材料的应用市场仍然很小。本文综述了高性能铝基复合材料在增强体、铝基体、制备方法、组织、性能和应用等方面的进展,讨论了在原材料、工程化、质量稳定性、性能数据、成本、应用和材料研制等方面存在的问题,从应用基体研究、材料研制、工程化、应用等方面展望了未来发展方向。高性能铝基复合材料的未来发展方向包括提升原材料质量、改善工艺稳定性、降低成本、加强工程化、扩大应用、探索增材制造+模锻技术及研制新一代纳米增强和纳米/微米混杂增强铝基复合材料。 |
其他语种文摘
|
Since the 1960s,aluminum matrix composites have been being investigated globally,and series of high-performance aluminum matrix composites,namely,damage tolerance,corrosion resistance,high-strength,heat resistance and low-thermal expansion aluminum matrix composites, have been developed.These composites have been used in the fields of aviation,aerospace,electronics and transportation.However,the present market for the application of high-performance aluminum matrix composites is still small,as compared to conventional metal materials and polymer matrix composites.In this paper,the advancements in reinforcements,aluminum matrix,processing methods, microstructure,properties and applications for high-performance aluminum matrix composites were reviewed.The problems existing in raw material,engineering,quality stability, property data,cost,application and materials development were discussed.Future directions from the aspects of applied basic research, materials development,engineering and applications were presented.The future directions for high-performance aluminum matrix composites include increasing the quality of raw materials,improving the stability of processing,lowering the cost,strengthening engineering,expanding applications,exploring the additive manufacturing plus die forging process, and developing new-generation nano reinforced and nano/micro hybrid reinforced aluminum matrix composites. |
来源
|
材料工程
,2023,51(4):67-87 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000255
|
关键词
|
铝基复合材料
;
高性能
;
进展
;
问题
;
未来方向
|
地址
|
1.
中国航发北京航空材料研究院, 北京, 100095
2.
北京市先进铝合金材料及应用工程技术研究中心, 北京市先进铝合金材料及应用工程技术研究中心, 北京, 100095
3.
先进复合材料重点实验室, 北京, 100095
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
文献收藏号
|
CSCD:7480407
|
参考文献 共
125
共7页
|
1.
Rawal S. Metal-matrix composites for space applications.
JOM,2001,53(4):14-17
|
CSCD被引
69
次
|
|
|
|
2.
Rohatgi P K. Solidification processing of cast metal matrix composites over the last 50 years and opportunities for the future.
JOM,2020,72(8):2912-2926
|
CSCD被引
2
次
|
|
|
|
3.
Harrigan W C. Scaling up particulate-reinforced aluminum composites for commercial production.
JOM,1991,43(8):32-35
|
CSCD被引
1
次
|
|
|
|
4.
Miracle D B. Aeronautical applications of metal-matrix composites.
ASM Handbook,Vol.21,2001:1043-1049
|
CSCD被引
1
次
|
|
|
|
5.
Guo Z X. Solid-state fabrication and interfaces of fibre reinforced metal matrix composites.
Progress in Materials Science,1995,39(4/5):411-495
|
CSCD被引
19
次
|
|
|
|
6.
Weddell J K. Continuous ceramic fibers.
The Journal of Textile Institute,1990,81(4):333-359
|
CSCD被引
1
次
|
|
|
|
7.
Parvizi-Majidi A. Fibers and whiskers.
Materials Science and Technology,2006:25-88
|
CSCD被引
1
次
|
|
|
|
8.
Vassel A. Continuous fibre reinforced titanium and aluminium composites:a comparison.
Materials Science and Engineering: A,1999,263(2):305-313
|
CSCD被引
12
次
|
|
|
|
9.
李佩桓. 连续SiC纤维增强金属基复合材料研究进展.
材料工程,2016,44(8):121-129
|
CSCD被引
7
次
|
|
|
|
10.
刘佳琳. SiC单纤维增强TC17复合材料横向拉伸性能研究.
金属学报,2018,54(12):1809-1817
|
CSCD被引
3
次
|
|
|
|
11.
Okura M. Fabrication and properties of fiber reinforced metal matrix composites.
Key Engineering Materials,1993,79/80:255-264
|
CSCD被引
1
次
|
|
|
|
12.
Murakami Y. Aluminum-based alloys.
Materials Science and Technology,2006:213-276
|
CSCD被引
1
次
|
|
|
|
13.
Huda M D. MMCs: materials,manufacturing,and mechanical properties.
Key Engineering Materials,1995,104/107:37-64
|
CSCD被引
4
次
|
|
|
|
14.
Zhang H. Tensile behavior and dynamic failure of aluminum 6092/B4C composites.
Materials Science and Engineering:A,2006,433(1/2):70-82
|
CSCD被引
7
次
|
|
|
|
15.
Esawi A M K. Carbon nanotube reinforced composites:potential and current challenges.
Materials & Design,2007,28(9):2394-2401
|
CSCD被引
28
次
|
|
|
|
16.
Paradise M. Carbon nanotubes-production and industrial applications.
Materials & Design,2007,28(5):1477-1489
|
CSCD被引
20
次
|
|
|
|
17.
Yamaguchi M. Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons.
Nanoscale Research Letters,2013,8(3):1-6
|
CSCD被引
2
次
|
|
|
|
18.
Nautiyal P. Reactive wetting and filling of boron nitride nanotubes by molten aluminum during equilibrium solidification.
Acta Materialia,2017,126:124-131
|
CSCD被引
7
次
|
|
|
|
19.
.
Metals handbook:volume 2,properties and selection:nonferrous alloys and special-purpose materials,1990
|
CSCD被引
1
次
|
|
|
|
20.
Huang J. Fatigue behavior of SiCp-reinforced aluminum composites in the very high cycle regime using ultrasonic fatigue.
Fatigue and Fracture of Engineering Materials and Structures,2006,29(7):507-517
|
CSCD被引
2
次
|
|
|
|
|