基于UMAP与HDBSCAN的北京市极端暴雨时空动态分布规律研究
Spatiotemporal dynamics distribution patterns of extreme rainstorms in Beijing revealed by UMAP and HDBSCAN
查看参考文献23篇
文摘
|
极端暴雨具有历时短、雨强大、破坏性强等特点,是引发城市内涝的主要原因之一,探究其时空动态分布规律,有助于提高城市内涝风险精细化管理水平.本文以北京市2004-2016年308个气象站点的降雨资料为研究样本,利用UMAP降维算法和HDBSCAN聚类算法,构建了各类极端暴雨事件的时空动态分布模型.首次提取了北京市全域4类极端暴雨模式:模式1,暴雨集中在主城区,并围绕主城区缓慢移动;模式2,暴雨从西南山区途经主城区,向东北方向移动;模式3,暴雨自西部山区向主城区西北部扩散,最后向主城区北部方向移动;模式4,暴雨从西部山区途经主城区向东移动.研究结果表明,北京市极端暴雨的主要类型为短历时降雨过程,暴雨中心在空间上均存在从西向东移动的趋势.其中,主城区、东南山区以及南部平原地区面临相对更高的极端暴雨风险.各类极端暴雨的模式特征物理机制明确,其重构特征可以充分表征实际暴雨事件特性.研究成果可为北京市降雨设计、城市内涝风险管理等工作提供一定的参考. |
其他语种文摘
|
Extreme rainstorm is characterized by short duration,strong downpours and widespread destructionall major causes of flash flood and waterlogging disasters. Exploring spatiotemporal dynamics of extreme rainstorm is helpful to refined management level of urban waterlogging risk. A method of clustering combined with dimensionality reduction algorithm was proposed in this study, to extract spatiotemporal dynamics of extreme rainstorm events. Precipitation data from 308 meteorological stations in Beijing from 2004 to 2016 were used, to construct spatiotemporal dynamics models of various extreme rainstorm events with the HDBSCAN clustering method. This was combined with UMAP dimensionality reduction algorithm to extract 4 types of extreme rainstorm models in Beijing. In mode 1, rainstorm was found concentrated in the main urban area, moving slowly around. In mode 2, rainstorm was found to move from the southwest mountainous area through the main urban area to the northeast. In mode 3, the rainstorm was found to spread from the western mountainous area to the northwest of the city, and to finally move to the north of the city. In mode 4,torrential rain was found to move westward from western mountain area to urban area. These results show that the main type of extreme rainstorm in Beijing is short-duration precipitation, and the rainstorm center has the tendency to move from west to east. Downtown area, southeastern mountainous area and southern plain area all face relatively higher extreme precipitation risks. The physical mechanism of model characteristics of all kinds of extreme rainfall is clear,and the reconstruction characteristics of rainfall events could fully represent actual rainfall events. This study provides important basis for flood forecasting and scientific management in Beijing. |
来源
|
北京师范大学学报. 自然科学版
,2023,59(2):269-279 【核心库】
|
DOI
|
10.12202/j.0476-0301.2022303
|
关键词
|
极端暴雨
;
UMAP
;
HDBSCAN
;
动态时空分布
;
北京
|
地址
|
1.
北京师范大学水科学研究院,数字流域实验室, 北京, 100875
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550081
3.
中国水利水电科学研究院, 北京, 100038
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0476-0301 |
学科
|
大气科学(气象学) |
基金
|
国家自然科学基金
;
济南市水务科技资助项目
|
文献收藏号
|
CSCD:7470382
|
参考文献 共
23
共2页
|
1.
程晓陶. 变化环境下洪涝风险演变特征与城市韧性提升策略.
水利学报,2022,53(7):757
|
CSCD被引
43
次
|
|
|
|
2.
陈文龙. 高密度城市暴雨洪涝治理理论框架及其应用研究.
水利学报,2022,53(7):769
|
CSCD被引
13
次
|
|
|
|
3.
舒章康. 中国极端降水和高温历史变化及未来趋势.
中国工程科学,2022,24(5):116
|
CSCD被引
31
次
|
|
|
|
4.
张炜. 我国城市暴雨内涝的成因及其应对策略.
自然灾害学报,2012,21(5):180
|
CSCD被引
19
次
|
|
|
|
5.
栾清华. 城市暴雨道路积水监测技术及其应用进展.
水资源保护,2022,38(1):106
|
CSCD被引
10
次
|
|
|
|
6.
邸苏闯. 基于气象雷达反演和云图外推法的临近期降雨预报方法研究.
水利水电技术(中英文),2022,53(5):13
|
CSCD被引
2
次
|
|
|
|
7.
Song X M. Changes in precipitation extremes in the Beijing metropolitan area during 1960-2012.
Atmospheric Research,2019,222:134
|
CSCD被引
4
次
|
|
|
|
8.
Pilgrim D H. Rainfall temporal patterns for design floods.
Journal of the Hydraulics Division,1975,101(1):81
|
CSCD被引
13
次
|
|
|
|
9.
Keifer C J. Synthetic storm pattern for drainage design.
Journal of the Hydraulics Division,1957,83(4):1332
|
CSCD被引
40
次
|
|
|
|
10.
Willems P. Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings.
Atmospheric Research,2012,103:106
|
CSCD被引
5
次
|
|
|
|
11.
夏军. 变化环境下中国水安全问题研究与展望.
水利学报,2016,47(3):292
|
CSCD被引
73
次
|
|
|
|
12.
Rafieeinasab A. Toward high-resolution flash flood prediction in large urban areas-analysis of sensitivity to spatiotemporal resolution of rainfall input and hydrologic modeling.
Journal of Hydrology,2015,531:370
|
CSCD被引
3
次
|
|
|
|
13.
胡睿. 基于聚类分析的短历时暴雨雨型研究.
水电能源科学,2021,39(4):8
|
CSCD被引
2
次
|
|
|
|
14.
刘媛媛. 基于机器学习短历时暴雨时空分布规律研究.
水利学报,2019,50(6):773
|
CSCD被引
13
次
|
|
|
|
15.
Liu W. Spatiotemporal modes of short time rainstorms based on high-dimensional data: a case study of the urban area of Beijing,China.
Water,2021,13(24):3597
|
CSCD被引
1
次
|
|
|
|
16.
Liu Y Y. Dynamic spatial-temporal precipitation distribution models for short-duration rainstorms in Shenzhen, China based on machine learning.
Atmospheric Research,2020,237:104861
|
CSCD被引
5
次
|
|
|
|
17.
Yuan Y F. Changes in classified precipitation in the urban, suburban, and mountain areas of Beijing.
Advances in Climate Change Research,2017,8(4):279
|
CSCD被引
1
次
|
|
|
|
18.
孙继松. 近10年北京地区极端暴雨事件的基本特征.
气象学报,2015,73(4):609
|
CSCD被引
71
次
|
|
|
|
19.
Zhou Y P. Rain characteristics and large-scale environments of precipitation objects with extreme rain volumes from TRMM observations.
Journal of Geophysical Research:Atmospheres,2013,118(17):9673
|
CSCD被引
1
次
|
|
|
|
20.
Mcinnes L.
UMAP: uniform manifold approximation and projection for dimension reduction,2018
|
CSCD被引
10
次
|
|
|
|
|