超声分子靶向造影剂的应用研究进展
Advances in Molecular Targeted Ultrasound Contrast Agents
查看参考文献37篇
文摘
|
超声分子靶向造影剂通过外周静脉注射进入血液循环之后,与相应受体结合,增强了目标病灶的成像信号,可实现疾病的早期诊断、分期、疗效评估及靶向治疗等。超声分子靶向造影剂还能通过微泡进行靶向药物或基因递送。纳米级的靶向造影剂还可透过血管内皮进入组织间隙内进行成像或治疗。超声分子靶向造影剂的研究目前多停留在临床前实验阶段,有一些临床试验已经在人体中开展,初步证实了靶向超声造影剂的安全性和可行性,超声分子靶向造影剂具有广阔的临床应用前景。 |
其他语种文摘
|
In real-time ultrasound, molecular targeted contrast agent is introduced into the blood circulation through peripheral intravenous injection to enhance the imaging signal of target lesions after binding to the corresponding intravascular receptors, which can realize early diagnosis, staging of diseases, assessment of treatment response, and targeted treatment. In addition, molecular targeted ultrasound contrast agents provide a platform for the delivery of drugs and genes via microbubbles, and nanoscale contrast agents can be infiltrated through vascular endothelium into the interstitial space of the lesion for imaging or treatment. The available studies of molecular targeted ultrasound contrast agents mainly focus on the preclinical trials. Some clinical trials have been conducted in humans and preliminarily confirm the safety and feasibility of targeted ultrasound contrast agents. The molecular targeted ultrasound contrast agents enjoy a broad prospect in clinical application. |
来源
|
中国医学科学院学报
,2023,45(2):298-302 【核心库】
|
DOI
|
10.3881/j.issn.1000-503X.14827
|
关键词
|
超声分子影像
;
靶向造影剂
;
诊断
;
疗效评估
;
药物递送
|
地址
|
中国人民解放军总医院第一医学中心超声诊断科, 北京, 100853
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1000-503X |
学科
|
临床医学 |
基金
|
北京市自然科学基金
|
文献收藏号
|
CSCD:7470008
|
参考文献 共
37
共2页
|
1.
Mankoff D A. A definition of molecular imaging.
J Nucl Med,2007,48(6):18N,21N
|
CSCD被引
8
次
|
|
|
|
2.
Li X. A preliminary study of photoacoustic/ultrasounddual-mode imaging in melanoma using MAGE-targeted gold nanoparticles.
Biochem Biophys Res Commun,2018,502(2):25561
|
CSCD被引
5
次
|
|
|
|
3.
Xu L. Ultrasound molecular imaging of breast cancer in MCF-7 orthotopic mice using gold nanoshelled poly (lactic-co-glycolic acid) nanocapsules: a novel dualtargeted ultrasound contrast agent.
Int J Nanomedicine,2018,13:1791-1807
|
CSCD被引
2
次
|
|
|
|
4.
Baghbani F. Novel ultrasound-responsive chitosan/perfluorohexane nanodroplets for imageguided smart delivery of an anticancer agent: curcumin.
Mater Sci Eng C Mater Biol Appl,2017,74:186193
|
CSCD被引
3
次
|
|
|
|
5.
Reinhardt M. Sensitive particle acoustic quantific-ation (SPAQ): a new ultrasound-based approach for the quantification of ultrasound contrast media in high concentrations.
Invest Radiol,2005,40(1):2-7
|
CSCD被引
2
次
|
|
|
|
6.
Zhou J H. Quantitative assessment of tumor blood flow in mice after treatment with different doses of an antiangiogenic agent with contrast-enhanced destruction replenishment US.
Radiology,2011,259(2):406-413
|
CSCD被引
4
次
|
|
|
|
7.
Pysz M A. Fast microbubble dwelltime based ultrasonic molecular imaging approach for quantification and monitoring of angiogenesis in cancer.
Quant Imaging Med Surg,2012,2(2):68-80
|
CSCD被引
4
次
|
|
|
|
8.
Wang H. Three-dimensional dynamic contrast-enhanced US imaging for early antiangiogenic treatment assessment in a mouse colon cancer model.
Radiology,2015,277(2):424-434
|
CSCD被引
5
次
|
|
|
|
9.
Frinking P J. Effects of acoustic radiation force on the binding efficiency of BR55, a VEGFR2specific ultrasound contrast agent.
Ultrasound Med Biol,2012,38(8):1460-1469
|
CSCD被引
2
次
|
|
|
|
10.
Abou-Elkacem L. Ultrasound molecular imaging of the breast cancer neovasculature using engineered fibronectin scaffold ligands: a novel class of targeted contrast ultrasound agent.
Theranostics,2016,6(11):1740-1752
|
CSCD被引
1
次
|
|
|
|
11.
Eschbach R S. Contrast-enhanced ultrasound with VEGFR2-targeted microbubbles for monitoring regorafenib therapy effects in experimental colorectal adenocarcinomas in rats with DCE-MRI and immunohistochemical validation.
PLoS One,2017,12(1):e0169323
|
CSCD被引
4
次
|
|
|
|
12.
Henderson E. The development of nanoparticles for the detection and imaging of ovarian cancers.
Biomedicines,2021,9(11):1554
|
CSCD被引
2
次
|
|
|
|
13.
Willmann J K. Ultrasound molecular imaging with BR55 in patients with breast and ovarian lesions: first-in-human results.
J Clin Oncol,2017,35(19):2133-2140
|
CSCD被引
17
次
|
|
|
|
14.
Smeenge M. First-in-human ultrasound mol-ecular imaging with a VEGFR2-specific ultrasound molecular contrast agent (BR55) in prostate cancer: a safety and feasibility pilot study.
Invest Radiol,2017,52(7):419-427
|
CSCD被引
6
次
|
|
|
|
15.
Hu Z. Detection and characterization of sentinellymph node by ultrasound molecular imaging with B7-H3-targeted microbubbles in orthotopic breast cancer model in mice.
Mol Imaging Biol,2022,24(2):333-340
|
CSCD被引
2
次
|
|
|
|
16.
Nam K. Sentinel lymph node characterization with a dual-targeted molecular ultrasound contrast agent.
Mol Imaging Biol,2018,20(2):221-229
|
CSCD被引
4
次
|
|
|
|
17.
Du J. Preparation and imaging investigation of dual-targeted C(3)F(8)-filled PLGA nanobubbles as a novel ultrasound contrast agent for breast cancer.
Sci Rep,2018,8(1):3887
|
CSCD被引
4
次
|
|
|
|
18.
Weller G E. Targeted ultrasound contrast agents: in vitro assessment of endothelial dysfunction and multi-targeting to ICAM-1 and sialyl Lewisx.
Biotechnol Bioeng,2005,92(6):780-788
|
CSCD被引
14
次
|
|
|
|
19.
Warram J M. A triple-targeted ultrasound contrast agent provides improved localization to tumor vasculature.
J Ultrasound Med,2011,30(7):921-931
|
CSCD被引
10
次
|
|
|
|
20.
Helbert A. Ultrasound molecular imaging with BR55, a predictive tool of antiangiogenic treatment efficacy in a chemo-induced mammary tumor model.
Invest Radiol,2020,55(10):657-665
|
CSCD被引
6
次
|
|
|
|
|