微流控芯片技术和流式细胞术检测替格瑞洛抗血小板疗效
Microfluidic Chip and Flow Cytometry for Examination of the Antiplatelet Effect of Ticagrelor
查看参考文献21篇
文摘
|
目的应用微流控芯片技术和流式细胞术体外分析剪切力作用下替格瑞洛的抗血小板疗效。方法采用微流控芯片技术检测300/ s、1500/ s剪切率条件下替格瑞洛对血小板聚集行为的影响,以血小板聚集体表面覆盖率为量化指标,计算替格瑞洛半抑制率;运用光学比浊法验证替格瑞洛抑制ADP诱导的血小板聚集效应;应用微流控芯片构建体外狭窄血管模型,探究高剪切率作用下血小板反应性,并采用流式细胞术分析替格瑞洛对高剪切诱导活化的血小板膜表面纤维蛋白原受体(PAC-1)和P-选择素(CD62P)表达的影响。结果在300/ s、1500/ s剪切率流动条件下,替格瑞洛呈浓度依赖性抑制血小板聚集, 300/ s较1500/ s抑制程度更明显(P均<0.001),当浓度≥4 μmol/ L时几乎完全抑制血小板聚集;替格瑞洛抑制ADP诱导的血小板聚集效应与流动条件下的结果相似,亦呈浓度依赖性抑制血小板聚集;替格瑞洛能够抑制PAC-1和CD62P的表达。结论应用微流控芯片技术分析血小板聚集和流式细胞术检测血小板活化,与仅用ADP诱导的基于聚集的分析相比,可确定不同患者对替格瑞洛反应的差异性。 |
其他语种文摘
|
Objective To examine the antiplatelet effect of ticagrelor by microfluidic chip and flow cytometry under shear stress in vitro. Methods Microfluidic chip was used to examine the effect of ticagrelor on platelet aggregation at the shear rates of 300/ s and 1500/ s. We adopted the surface coverage of platelet aggregation to calculate the half inhibition rate of ticagrelor. The inhibitory effect of ticagrelor on ADP-induced platelet aggregation was verified by optical turbidimetry. Microfluidic chip was used to construct an in vitro vascular stenosis model, with which the platelet reactivity under high shear rate was determined. Furthermore, the effect of ticagrelor on the expression of fibrinogen receptor(PAC-1)and P-selectin(CD62P)on platelet membrane activated by high shear rate was analyzed by flow cytometry. Results At the shear rates of 300/ s and 1500/ s, ticagrelor inhibited platelet aggregation in a concentration-dependent manner, and the inhibition at 300/ s was stronger than that at 1500/ s(both P <0.001). Ticagrelor at a concentration ≥4 μmol/ L almost completely inhibited platelet aggregation. The inhibition of ADP-induced platelet aggregation by ticagrelor was similar to the results under flow conditions and also in a concentration-dependent manner. Ticagrelor inhibited the expression of PAC-1 and CD62P. Conclusion We employed microfluidic chip to analyze platelet aggregation and flow cytometry to detect platelet activation, which can reveal the responses of different patients to ticagrelor. |
来源
|
中国医学科学院学报
,2023,45(2):257-263 【核心库】
|
DOI
|
10.3881/j.issn.1000-503X.15155
|
关键词
|
微流控芯片
;
流式细胞术
;
替格瑞洛
;
血小板聚集
;
剪切率
;
剪切诱导活化
|
地址
|
重庆医科大学附属永川医院中心实验室, 重庆, 402160
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-503X |
学科
|
临床医学 |
基金
|
国家自然科学基金
;
重庆市社会事业与民生保障科技创新专项
;
重庆市医学科研计划项目
;
重庆市博士后科研流动站项目
|
文献收藏号
|
CSCD:7470002
|
参考文献 共
21
共2页
|
1.
van der Meijden P E J. Platelet biology and functions: new concepts and clinical perspectives.
Nat Rev Cardiol,2019,16(3):166-179
|
CSCD被引
44
次
|
|
|
|
2.
高振岳. 高剪切场诱导血小板活化和聚集机制的研究进展.
医用生物力学,2005:256-259
|
CSCD被引
1
次
|
|
|
|
3.
Loganath K. Ticagrelor in the management of coronary artery disease.
Future Cardiol,2021,17(4):561-571
|
CSCD被引
1
次
|
|
|
|
4.
Valgimigli M. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS).
Eur Heart J,2018,39(3):213-260
|
CSCD被引
81
次
|
|
|
|
5.
Cuisset T. Predictive value of posttreatment platelet reactivity for occurrence of post-discharge bleeding after non-ST elevation acute coronary syndrome. Shifting from antiplatelet resistance to bleeding risk assessment.
EuroIntervention,2009,5(3):325-329
|
CSCD被引
5
次
|
|
|
|
6.
Martin A C. Management of the bleeding risk associated with antiplatelet agents.
Rev Med Interne,2017,38(7):467-473
|
CSCD被引
1
次
|
|
|
|
7.
Nakamura T. Effects of dipyridamole and aspirin on shear-induced platelet aggregation in whole blood and platelet-rich plasma.
Cerebrovasc Dis,2002,14(3/4):234-238
|
CSCD被引
2
次
|
|
|
|
8.
Resendiz J C. Purinergic P2Y12 receptor blockade inhibits shear-induced platelet phosphatidylinositol 3-kinase activation.
Mol Pharmacol,2003,63(3):639-645
|
CSCD被引
1
次
|
|
|
|
9.
Grove E L. Platelet function testing in atherothrombotic disease.
Curr Pharm Design,2012,18(33):5379-5391
|
CSCD被引
1
次
|
|
|
|
10.
黎洋. 在生理流动条件下分析血小板黏附聚集的简易微流控芯片技术.
军事医学,2017,41(7):586-593
|
CSCD被引
6
次
|
|
|
|
11.
张天聪. 生理性流动条件下血小板在玻璃表面的聚集行为.
医用生物力学,2021,37(3):425-432
|
CSCD被引
1
次
|
|
|
|
12.
Vinholt P J. Light transmission aggregometry using pre-coated microtiter plates and a Victor X5 plate reader.
PloS One,2017,12(10):e0185675
|
CSCD被引
1
次
|
|
|
|
13.
Jackson S P. The growing complexity of platelet aggregation.
Blood,2007,109(12):5087-5095
|
CSCD被引
11
次
|
|
|
|
14.
Cosemans J M. Continuous signaling via PI3K isoforms beta and gamma is required for platelet ADP receptor function in dynamic thrombus stabilization.
Blood,2006,108(9):3045-3052
|
CSCD被引
4
次
|
|
|
|
15.
Goto S. Dependence of platelet thrombus stability on sustained glycoproteinIIb/IIIa activation through adenosine 5'-diphosphate receptor stimulation and cyclic calcium signaling.
J Am Coll Cardiol,2006,47(1):155-162
|
CSCD被引
3
次
|
|
|
|
16.
李绵洋. 剪切力作用对血小板膜糖蛋白分子表达的影响.
中华医学杂志,2002,82(4):267-270
|
CSCD被引
9
次
|
|
|
|
17.
Nesbitt W S. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation.
Nat Med,2009,15(6):665-673
|
CSCD被引
21
次
|
|
|
|
18.
Kamada H. Shear-induced platelet aggregation and distribution of thrombogenesis at stenotic vessels.
Microcirculation,2017,24(4)
|
CSCD被引
1
次
|
|
|
|
19.
Yang H. Fibrinogen is required for maintenance of platelet intracellular and cell-surface P-selectin expression.
Blood,2009,114(2):425-436
|
CSCD被引
3
次
|
|
|
|
20.
McEver R P. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall.
Cardiovasc Res,2015,107(3):331-339
|
CSCD被引
12
次
|
|
|
|
|