稀疏结构光照明三维层析显微技术
3D Optical Sectioning Microscopy with Sparse Structured Illumination
查看参考文献37篇
文摘
|
光学显微具有对样品损伤低、可特异性成像等优点,是生物医学、生命科学、材料化学等多个领域中必不可少的成像手段。然而,传统光学显微镜多采用平行光照明整个样品,无法有效区分在焦信号和离焦背景,不具备三维层析成像能力。基于此,提出一种基于共振扫描的稀疏结构光照明三维层析显微(SSI-3DSM)技术,通过共振扫描聚焦光斑快速生成稀疏条纹结构光,利用多步相移减除背景噪声实现对待测样品的三维层析成像。相较于扫描宽场成像,该方法将轴向分辨率提升1.3倍,信背比提升12倍。此外,该技术性能稳定、成本较低、便于商业化开发,可与结构光照明、单分子定位等超分辨显微成像技术相结合以进一步提高横向分辨率。 |
其他语种文摘
|
Optical microscopy has the advantages of low sample damage as well as high specificity imaging and is an indispensable imaging technique in many fields,such as biomedicine,life science,and material chemistry.However,the conventional optical microscope uses parallel light to illuminate the entire sample,which cannot effectively distinguish the in-focus signal from the defocused background,and does not have the ability of realizing a three-dimensional optical section imaging.Hence,a sparse structured illumination three-dimensional sectioning microscopy (SSI-3DSM) technology based on resonant scanning is proposed herein.The sparse structured illumination is rapidly generated via the resonant scanning focusing spot,and the three-dimensional optical section imaging of the sample to be measured is realized using a multistep phase shift to determine and eliminate the background noise.Compared with scanning wide-field imaging,the proposed method improves the axial resolution by 1.3 times and the signal-to-background ratio by 12 times.Moreover,the proposed method demonstrates stable performance,is cost effective,and can be easily commercialized.It can be combined with super-resolution microscopy imaging techniques such as structured illumination microscopy and single-molecule localization to further improve lateral resolution. |
来源
|
激光与光电子学进展
,2023,60(8):0811016 【核心库】
|
DOI
|
10.3788/LOP230456
|
关键词
|
成像系统
;
结构光照明显微
;
共振扫描
;
数字共聚焦显微
;
大深度成像
;
三维层析成像
|
地址
|
1.
西安电子科技大学物理学院, 陕西, 西安, 710071
2.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1006-4125 |
学科
|
物理学 |
基金
|
国家重点研发计划
;
陕西省自然科学基金
;
国家自然科学基金
;
中国轻工业五粮液浓香型白酒固态发酵重点实验室开放基金
|
文献收藏号
|
CSCD:7468500
|
参考文献 共
37
共2页
|
1.
Chen B C. Lattice lightsheet microscopy: imaging molecules to embryos at high spatiotemporal resolution.
Science,2014,346(6208):1257998
|
CSCD被引
59
次
|
|
|
|
2.
Mortensen K I. Optimized localization analysis for single-molecule tracking and super-resolution microscopy.
Nature Methods,2010,7(5):377-381
|
CSCD被引
16
次
|
|
|
|
3.
Holden S J. DAOSTORM: an algorithm for high-density super-resolution microscopy.
Nature Methods,2011,8(4):279-280
|
CSCD被引
26
次
|
|
|
|
4.
Chi K R. Super-resolution microscopy: breaking the limits.
Nature Methods,2009,6(1):15-18
|
CSCD被引
9
次
|
|
|
|
5.
Zanacchi F C. Livecell 3D super-resolution imaging in thick biological samples.
Nature Methods,2011,8(12):1047-1049
|
CSCD被引
10
次
|
|
|
|
6.
Rowlands C J. Parallel superresolution imaging.
Nature Methods,2013,10(8):709-710
|
CSCD被引
1
次
|
|
|
|
7.
Pastrana E. Fast 3D super-resolution fluorescence microscopy.
Nature Methods,2011,8(1):46
|
CSCD被引
1
次
|
|
|
|
8.
Jungmann R. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT.
Nature Methods,2014,11(3):313-318
|
CSCD被引
33
次
|
|
|
|
9.
Liu C. Five-wavelength optical-resolution photoacoustic microscopy of blood and lymphatic vessels.
Advanced Photonics,2021,3(1):016002
|
CSCD被引
10
次
|
|
|
|
10.
Lu L P. Hybrid brightfield and darkfield transport of intensity approach for high-throughput quantitative phase microscopy.
Advanced Photonics,2022,4(5):056002
|
CSCD被引
4
次
|
|
|
|
11.
Wang W S. Dual-modulation difference stimulated emission depletion microscopy to suppress the background signal.
Advanced Photonics,2022,4(4):046001
|
CSCD被引
3
次
|
|
|
|
12.
Deng W. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?.
Nature Reviews Neuroscience,2010,11(5):339-350
|
CSCD被引
54
次
|
|
|
|
13.
Lian H. NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease.
Neuron,2015,85(1):101-115
|
CSCD被引
27
次
|
|
|
|
14.
Qiao W. Single-scan HiLo with line-illumination strategy for optical section imaging of thick tissues.
Biomedical Optics Express,2021,12(4):2373-2383
|
CSCD被引
3
次
|
|
|
|
15.
Zhong Q Y. Highthroughput optical sectioning via line-scanning imaging with digital structured modulation.
Optics Letters,2021,46(3):504-507
|
CSCD被引
6
次
|
|
|
|
16.
Mertz J. Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection.
Journal of Biomedical Optics,2010,15(1):016027
|
CSCD被引
4
次
|
|
|
|
17.
Neil M A. Method of obtaining optical sectioning by using structured light in a conventional microscope.
Optics Letters,1997,22(24):1905-1907
|
CSCD被引
42
次
|
|
|
|
18.
Wu Y C. Faster., sharper, and deeper: structured illumination microscopy for biological imaging.
Nature Methods,2018,15(12):1011-1019
|
CSCD被引
27
次
|
|
|
|
19.
Keller P J. Fast, highcontrast imaging of animal development with scanned light sheet-based structured-illumination microscopy.
Nature Methods,2010,7(8):637-642
|
CSCD被引
19
次
|
|
|
|
20.
Nixon-Abell J. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER.
Science,2016,354(6311):aaf3928
|
CSCD被引
9
次
|
|
|
|
|