压力对Ti_2AlNb合金扩散焊接头组织与性能的影响
Effect of pressure on microstructure and mechanical properties of diffusion bonded joints of Ti_2AlNb alloy
查看参考文献29篇
文摘
|
针对Ti_2AlNb合金进行直接固态扩散焊,研究压力对合金扩散焊接头组织与性能的影响,使用扫描电镜分析焊接接头的显微组织随压力的变化规律,对不同压力下的焊接接头进行室温拉伸实验,分析接头性能随压力的变化趋势以及接头的断裂机制。结果表明:随着压力的增加,试样表面的变形量增大,在高温下变形区域发生动态回复与再结晶,促进了连接面处孔洞的愈合,焊合率因此逐渐升高;Ti_2AlNb合金扩散焊接头可以分为再结晶区、变形区以及母材三部分,其中再结晶区主要由等轴的B2相以及α_2相组成,随着扩散焊压力的增加,再结晶区的宽度明显变宽;焊接接头的强度随着压力的增加先升高后下降。当焊接工艺参数为960 ℃-60 MPa-120 min时获得的焊接接头性能最好,其抗拉强度为972 MPa,达到母材强度的98%;过大的压力使得再结晶晶粒粗化,且再结晶区和变形区交界处产生裂纹,导致接头性能反而恶化。 |
其他语种文摘
|
Direct solid diffusion bonding of Ti_2AlNb alloy was carried out,and the effect of pressure on the microstructure and mechanical properties of the bonded joints was studied.Scanning electron microscopy was used to analyze the microstructure of the welded joint under different pressures.The tensile property of the joints with different pressures was tested and the variation trend of the tensile property with pressure was analyzed.The results show that with the increase of pressure,the deformation within the sample surface layer increased,and the dynamic recovery and recrystallization occurred in the deformed area at high temperature,which promotes the closing of voids on the bonding interface and the rise of well-bonded areas.A diffusion bonded joint of Ti_2AlNb alloy can be divided into three parts:recrystallization zone,deformation zone and base metal.The recrystallization zone is mainly composed of equiaxed B2 phase and α_2 phase.With the increase of pressure,the width of the recrystallization zone becomes wider obviously,and the strength of the bonded joint increases first and then decreases.When the welding parameters are 960 ℃-60 MPa-120 min,the welded joint had the best performance,and its tensile strength is 972 MPa,reaching 98% of the base metal.An excessive pressure coarsened the recrystallization grains,and cracks appeared at the interface of the recrystallized zone and the deformation zone,which deteriorated the performance of the bonded joint. |
来源
|
航空材料学报
,2023,43(2):51-58 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2022.000162
|
关键词
|
Ti_2AlNb合金
;
扩散焊
;
微观组织
;
力学性能
|
地址
|
1.
上海交通大学材料科学与工程学院, 金属基复合材料国家重点实验室, 上海, 200240
2.
中国航发南方工业有限公司, 湖南, 株洲, 412002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
科技专项课题
;
国家重大科技专项
|
文献收藏号
|
CSCD:7468329
|
参考文献 共
29
共2页
|
1.
Banerjee D. A new ordered orthorhombic phase in a Ti_3Al-Nb alloy.
Acta Metallurgica,1988,36(4):871-882
|
CSCD被引
108
次
|
|
|
|
2.
周毅. β/B2锻造Ti-22Al-23Nb-2(Mo,Zr)合金的组织演化与综合力学性能.
航空材料学报,2020,40(4):25-35
|
CSCD被引
7
次
|
|
|
|
3.
Bu Z Q. Effect of cooling rate on phase transformation in Ti_2AlNb alloy.
Journal of Alloys and Compounds,2022,893:162364
|
CSCD被引
5
次
|
|
|
|
4.
Goyal K. Phase stability and microstructural evolution of Ti_2AlNb alloys: a review.
Materials Today:Proceedings,2021,41:951-968
|
CSCD被引
13
次
|
|
|
|
5.
Zhang H. Phase transformation and microstructure control of Ti_2AlNb-based alloys: a review.
Journal of Materials Science & Technology,2021,80:203-216
|
CSCD被引
12
次
|
|
|
|
6.
沈军. Ti_2AlNb基合金微观组织调制及热成形研究进展.
金属学报,2013,49(11):1286-1294
|
CSCD被引
30
次
|
|
|
|
7.
王伟. 热处理对Ti_2AlNb合金显微组织及力学性能的影响.
钛工业进展,2015,32(1):16-19
|
CSCD被引
6
次
|
|
|
|
8.
刘石双. Ti_2AlNb合金研究与展望.
中国有色金属学报,2021,31(11):3106-3126
|
CSCD被引
14
次
|
|
|
|
9.
Emura S. Room-temperature tensile and high-cycle-fatigue strength of fine TiB particulate-reinforced Ti-22Al-27Nb composites.
Metallurgical and Materials Transactions A,2004,35(9):2971-2979
|
CSCD被引
4
次
|
|
|
|
10.
Germann L. Effect of composition on the mechanical properties of newly developed Ti_2AlNb-based titanium aluminide.
Intermetallics,2005,13(9):920-924
|
CSCD被引
46
次
|
|
|
|
11.
Srinivasulu G. Monotonic and low cycle fatigue behavior of an O+B2 alloy at high temperatures.
Materials Science & Engineering: A,2014,599:268-278
|
CSCD被引
2
次
|
|
|
|
12.
张艺. β锻造Ti-22Al-25Nb合金的组织转变与拉伸性能.
中国有色金属学报,2008,18(1):30-35
|
CSCD被引
10
次
|
|
|
|
13.
Xue C. B2 grain growth and particle pinning effect of Ti-22Al-25Nb orthorhombic intermetallic alloy during heating process.
Intermetallics,2012,29:41-47
|
CSCD被引
12
次
|
|
|
|
14.
Wang W. Quantitative analysis of the effect of heat treatment on microstructural evolution and microhardness of an isothermally forged Ti-22Al-25Nb orthorhombic alloy.
Intermetallics,2014,45:29-37
|
CSCD被引
17
次
|
|
|
|
15.
Lei Z. A comparative study of microstructure and tensile properties of Ti_2AlNb joints prepared by laser welding and laser-additive welding with the addition of filler powder.
Journal of Materials Processing Technology,2018,255:477-487
|
CSCD被引
7
次
|
|
|
|
16.
Chen W. The effect of annealing on microstructure and tensile properties of Ti-22Al-25Nb electron beam weld joint.
Intermetallics,2016,75:8-14
|
CSCD被引
13
次
|
|
|
|
17.
Chen X. Microstructure evolution and mechanical properties of linear friction welded Ti_2AlNb alloy.
Journal of Alloys and Compounds,2015,646:490-496
|
CSCD被引
27
次
|
|
|
|
18.
He P. Microstructure and strength of brazed joints of Ti_3Al-base alloy with NiCrSiB.
Materials Characterization,2004,52(4/5):309-318
|
CSCD被引
13
次
|
|
|
|
19.
邹俭英. Ti_2AlNb基合金连接性问题综述.
中国材料进展,2019,38(7):710-716
|
CSCD被引
1
次
|
|
|
|
20.
邹家生.
材料连接原理与工艺,2005
|
CSCD被引
14
次
|
|
|
|
|