Ti-Al-V-Zr合金的团簇式设计及铸态组织和力学性能
Microstructure and mechanical properties of Ti-Al-V-Zr cast alloys with different Zr contents based on Ti-6Al-4V cluster formula
查看参考文献35篇
文摘
|
Ti-6Al-4V是目前应用最广泛的钛合金,但其铸态强塑性不足。本研究设计思想基于Ti-6Al-4V合金双团簇成分式α-{[Al-Ti_(12)](AlTi_2)}_(12)+β-{[Al-Ti_(14)](V_2Ti)}_5:首先通过改变β相团簇式个数为2,使合金成分偏向α-Ti,其次增加β相团簇式中V原子个数至3,提高了β-Ti结构单元稳定性,然后用不同个数Zr(x =1、2、3、5)替代β相团簇式中Ti,最后得到了团簇式α-{[Al-Ti_(12)](AlTi_2)}_(15)-β-{[AlTi_(14-x)Zr_x]V_3)}_2,设计了Ti-(6.64~6.82)Al-(2.42~2.35)V-(1.44~7.02)Zr (质量分数/%)合金,采用非自耗真空电弧炉熔炼制备合金铸锭,并用真空铜模吸铸成合金棒材,进而对不同合金样品进行显微组织表征和拉伸测试。结果表明:合金均由α'相马氏体组成,其形貌由针状魏氏逐渐转为网篮组织,其中Ti-6.64Al-2.35V-7.02Zr (Zr含量最高)合金为网篮组织,具有最佳的力学性能,屈服强度 σYS为806 MPa,抗拉强度σUTS为963 MPa,伸长率δ为5.9%,相比于相同状态下Ti-6Al-4V合金,分别提高了23%、19%、51%;比强度和比硬度分别为217 kN·m/kg和0.71 GPa·cm~3/g,相比于Ti-6Al-4V合金分别提高了18%和10%。 |
其他语种文摘
|
Aiming at improving the strength-plasticity match in the as-cast state of the most widely used Ti-6Al-4V the present work designs Ti-Al-V-Zr alloys on the basis of the dual-cluster formula of Ti-6Al-4V,α-{[Al-Ti_(12)](AlTi_2) }_(12) +β-{[Al-Ti_(14)](V_2Ti)}_5:first,the alloys are more biased towards α-Ti by decreasing the number of β unit to 2,then,the stability of β-Ti is improved by increasing the number of V atoms in β unit to 3,and finally,Zr (x=1-5) replaces Ti in the β unit.Finally α-{[Al-Ti_(12)](AlTi_2) }_(15)-β-{[AlTi_(14-x)Zr_x]V_3)}_2 is obtained,Ti-(6.64-6.82) Al-(2.42-2.35) V-(1.44-7.02) Zr (mass fraction,%) alloy is designed.The alloy ingots are prepared by melting in a non-consuming vacuum are furnace,and the alloy bars are suction-cast in copper mould.The results show that the alloys are all in α' martensite structure,showing morphologies changing from acicular Widmannstatten structure at lower Zr contents to net-basket structure at higher Zr contents.Among the designed alloys,Ti-6.64Al-2.35V-7.02Zr (x=5) with a net-basket structure,has the best mechanical properties:yield strength of 806 MPa,tensile strength of 963 MPa,and elongation of 5.9%,which are respectively 23%,19% and 51% higher than those of Ti-6Al-4V alloy under the same preparation condition.In particular,the specific strength and specific hardness are 217kN·m/kg and 0.71 GPa·cm~3/g,which are 18% and 10% higher than Ti-6Al-4V alloy. |
来源
|
航空材料学报
,2023,43(2):42-50 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2022.000071
|
关键词
|
钛合金
;
Ti-Al-V-Zr
;
成分设计
;
团簇式
;
力学性能
|
地址
|
1.
大连理工大学, 三束材料改性教育部重点实验室, 辽宁, 大连, 116024
2.
大连交通大学材料科学与工程学院, 辽宁, 大连, 116028
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
大连市科技创新基金重点学科重大课题
;
军委科技委2020年重点基础研究项目
|
文献收藏号
|
CSCD:7468328
|
参考文献 共
35
共2页
|
1.
Morita T. Strengthening of Ti-6Al-4V alloy by short-time duplex heat treatment.
Materials Transactions,2005,46(7):1681-1686
|
CSCD被引
2
次
|
|
|
|
2.
许明方. Ti-6Al-4V组织相变研究进展.
精密成形工程,2020,12(2):93-97
|
CSCD被引
6
次
|
|
|
|
3.
Sheng J W. Characterization of microstructure and texture evolution in Ti664 titanium alloy after multidirectional forging and annealing treatments.
JOM,2019,71(12):4687-4695
|
CSCD被引
3
次
|
|
|
|
4.
Zhang Z X. The low strain rate response of as-cast Ti-6Al-4V alloy with an initial coarse lamellar structure.
Metals-Open Access Metallurgy Journal,2018,8(4):270
|
CSCD被引
2
次
|
|
|
|
5.
Kumar P. Microand meso-structures and their influence on mechanical properties of selectively laser melted Ti-6Al-4V.
Acta Materialia,2018,154:246-260
|
CSCD被引
32
次
|
|
|
|
6.
Jovanovic M T. The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti-6Al-4V alloy.
Materials & Design,2006,27(3):192-199
|
CSCD被引
16
次
|
|
|
|
7.
Seshacharyulu T. Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure.
Materials Science & Engineering: A,2002,325(1/2):112-125
|
CSCD被引
95
次
|
|
|
|
8.
Bania P J.
High strength alpha-beta titanium-base alloy:US4943412 A,1990
|
CSCD被引
1
次
|
|
|
|
9.
Kashii H.
High strength and high ductility titanium alloy: US5759484 A,1996
|
CSCD被引
1
次
|
|
|
|
10.
Matsunaga S. Effect of Zr on microstructure and oxidation behavior of α and α + α2 Ti-Al-Nb alloys.
Materials Transactions,2016,57(11):1902-1907
|
CSCD被引
1
次
|
|
|
|
11.
Jing R. Structure and mechanical properties of Ti-6Al-4V alloy after zirconium addition.
Materials Science & Engineering: A,2012,552(8):295-300
|
CSCD被引
13
次
|
|
|
|
12.
Bania P J. An advanced alloy for elevated temperatures.
JOM,1988,40(3):20-22
|
CSCD被引
12
次
|
|
|
|
13.
Cowley J M. Short-and long-range order parameters in disordered solid solutions.
Physical Review,1960,120(5):1648-1657
|
CSCD被引
13
次
|
|
|
|
14.
Dong C. From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses.
Journal of Physics D,2007,40(15):273-291
|
CSCD被引
91
次
|
|
|
|
15.
Dong D. Nearest-neighbor coordination polyhedral clusters in metallic phases defined using Friedel oscillation and atomic dense packing.
Journal of Applied Crystallography,2015,48(6):2002-2005
|
CSCD被引
9
次
|
|
|
|
16.
刘田雨. 基于团簇成分式设计激光增材制造TiAlVNb系合金的显微组织与力学性能.
中国有色金属学报:英文版,2021,31(10):3012-3023
|
CSCD被引
1
次
|
|
|
|
17.
于建民. Ti-6Al-2Sn-4Zr钛合金热变形行为和组织的研究.
锻压技术,2011,36(4):122-126
|
CSCD被引
2
次
|
|
|
|
18.
Liu T Y. Composition formulas of Ti alloys derived by interpreting Ti-6Al-4V.
Science China Technological Sciences,2021,64:1732-1740
|
CSCD被引
12
次
|
|
|
|
19.
Madsem A. Effects of aging on the tensile and fatigue behavior of the near-alpha Ti-1100 at room temperature and 593 °C.
International Journal of Fatigue,1996,18(4):275
|
CSCD被引
1
次
|
|
|
|
20.
Yang Y. Evolution of microstructure of full lamellar titanium alloy BT18Y solutionized at α + β phase field.
Acta Metallurgica Sinica-Chinese Edition,2005,41(7):713-720
|
CSCD被引
2
次
|
|
|
|
|