基于嫦娥7号探测任务概念设计的月球南极光照条件和电场环境研究
Lunar polar illumination and electrical field environment simulation based on a conceptual design for China's Chang'E-7 mission
查看参考文献40篇
文摘
|
月球极区挥发分(包括水冰)是月球探测的重要目标.本文系统地提出了中国嫦娥7号月球南极探测任务的概念设计,包括轨道器、着陆器、巡视器和飞跃器以及中继星.通过轨道器获取的极区高分辨影像可为着陆选址提供参考.巡视器和飞跃器分别对光照区和永久阴影区开展原位探测.所有的数据均通过中继星进行接收并传回地面.考虑到极区特殊的光照条件,我们计算了覆盖沙克尔顿(Shackleton)撞击坑部分区域15 km×15 km范围内2024-2026年的光照率,并分析了潜在着陆区的光照条件、坡度以及距探测目标的距离.考虑到极区因地形遮挡产生的尾迹效应,我们计算了Shackleton撞击坑及其周围区域37 km×27 km范围内的电场环境.发现坑缘周围光照区电势最高不超过2.1 V,而由尾迹效应引起的坑内电势最低可达-500 V.这对以坑底为探测目标的飞跃器来说有必要进行风险评估. |
其他语种文摘
|
Lunar polar volatiles, such as water ice, are essential lunar exploration objects. The conceptual design for China's Chang'E-7 lunar exploration mission to the South Pole was proposed. The mission comprises an orbiter, a lander, a rover, a leaper, and a relay satellite. The orbiter can provide high-resolution images to select a suitable landing site. The rover and leaper will be deployed for in-situ exploration in sunlit areas and permanently shadowed regions, respectively. The relay satellite will transmit all data to the ground. We calculated the accumulated illumination, as an engineering condition, within a 15 km×15 km area partially covering the Shackleton crater from January 1, 2024, to December 31, 2026. Two potential landing sites-areas SR1 and CR1-were analyzed in detail by comparing their average illumination rate, slope, and distance to the exploration target. Additionally, we simulated the electric field of the Shackleton crater within a 37 km×27 km area, considering the effect of the plasma wake on the electric field in shadowed areas. The results show that the maximum surface potential near the rims is less than 2.1 V, while the minimum surface potential at the bottom of the crater can reach as low as -500 V due to the plasma wake effect. Therefore, a risk assessment is necessary, especially for the exploration of the leaper at the bottom of the Shackleton crater. |
来源
|
中国科学. 物理学
, 力学, 天文学,2023,53(4):249611 【核心库】
|
DOI
|
10.1360/SSPMA-2022-0255
|
关键词
|
月球南极
;
光照条件
;
电场
;
沙克尔顿撞击坑
;
嫦娥7号
|
地址
|
1.
深空探测实验室, 合肥, 230026
2.
澳门科技大学, 月球与行星科学国家重点实验室, 澳门, 999078
3.
中国科学院地球化学研究所,月球与行星科学研究中心, 贵阳, 550081
4.
中国科学院比较行星学卓越创新中心, 中国科学院比较行星学卓越创新中心, 合肥, 230026
5.
哈尔滨工业大学, 机器人技术与系统国家重点实验室, 哈尔滨, 150001
6.
北京空间飞行器总体设计部, 北京, 100094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-7275 |
学科
|
天文学;航天(宇宙航行) |
基金
|
国家重点研发计划
;
国家自然科学基金
;
深空探测实验室前沿科研计划
;
贵州省基础研究计划
|
文献收藏号
|
CSCD:7460482
|
参考文献 共
40
共2页
|
1.
李雄耀. 极区月壤和水冰形成演化机制及物理特性研究.
深空探测学报,2022,9:123-133
|
CSCD被引
3
次
|
|
|
|
2.
裴照宇. 月球探测进展与国际月球科研站.
科学通报,2020,65:2577-2586
|
CSCD被引
61
次
|
|
|
|
3.
Farrell W M. Anticipated electrical environment within permanently shadowed lunar craters.
J Geophys Res,2010,115:E03004
|
CSCD被引
5
次
|
|
|
|
4.
Williams J P. Seasonal polar temperatures on the Moon.
J Geophys Res Planets,2019,124:2505-2521
|
CSCD被引
15
次
|
|
|
|
5.
吴伟仁. 月球极区探测的主要科学与技术问题研究.
深空探测学报,2020,7:223-231
|
CSCD被引
9
次
|
|
|
|
6.
De Rosa D. Characterisation of potential landing sites for the European Space Agency's Lunar Lander project.
Planet Space Sci,2012,74:224-246
|
CSCD被引
15
次
|
|
|
|
7.
Glaser P. Illumination conditions at the lunar south pole using high resolution Digital Terrain Models from LOLA.
Icarus,2014,243:78-90
|
CSCD被引
5
次
|
|
|
|
8.
Heldmann J L. Site selection and traverse planning to support a lunar polar rover mission: A case study at Haworth Crater.
Acta Astronaut,2016,127:308-320
|
CSCD被引
4
次
|
|
|
|
9.
Speyerer E J. Optimized traverse planning for future polar prospectors based on lunar topography.
Icarus,2016,273:337-345
|
CSCD被引
4
次
|
|
|
|
10.
Bussey D B J. Illumination conditions at the lunar south pole.
Geophys Res Lett,1999,26:1187-1190
|
CSCD被引
10
次
|
|
|
|
11.
Speyerer E J. Persistently illuminated regions at the lunar poles: Ideal sites for future exploration.
Icarus,2013,222:122-136
|
CSCD被引
7
次
|
|
|
|
12.
Margot J L. Topography of the lunar poles from radar interferometry: A survey of cold trap locations.
Science,1999,284:1658-1660
|
CSCD被引
15
次
|
|
|
|
13.
Noda H. Illumination conditions at the lunar polar regions by KAGUYA(SELENE) laser altimeter.
Geophys Res Lett,2008,35:L24203
|
CSCD被引
14
次
|
|
|
|
14.
Bussey D B J. Illumination conditions of the south pole of the Moon derived using Kaguya topography.
Icarus,2010,208:558-564
|
CSCD被引
11
次
|
|
|
|
15.
Mazarico E. Illumination conditions of the lunar polar regions using LOLA topography.
Icarus,2011,211:1066-1081
|
CSCD被引
19
次
|
|
|
|
16.
Glaser P. Illumination conditions at the lunar poles: Implications for future exploration.
Planet Space Sci,2018,162:170-178
|
CSCD被引
8
次
|
|
|
|
17.
Farrell W M. Concerning the dissipation of electrically charged objects in the shadowed lunar polar regions.
Geophys Res Lett,2008,35:L19104
|
CSCD被引
1
次
|
|
|
|
18.
Farrell W M. Loss of solar wind plasma neutrality and affect on surface potentials near the lunar terminator and shadowed polar regions.
Geophys Res Lett,2008,35:L05105
|
CSCD被引
1
次
|
|
|
|
19.
Berg O E. Lunar Soil Movement Registered by the Apollo 17 Cosmic Dust Experiment.
Interplanetary Dust and Zodiacal Light. Lecture Notes in Physics. 48,1976:233-237
|
CSCD被引
1
次
|
|
|
|
20.
Xie L H. Lunar dust fountain observed near twilight craters.
Geophys Res Lett,2020,47:e2020GL089593
|
CSCD被引
11
次
|
|
|
|
|