帮助 关于我们

返回检索结果

微藻无机碳利用在岩石风化及碳循环过程中的作用
Role of carbonic utilization of microalgae on rock weathering and carbon cycle

查看参考文献130篇

赵丽华 1,2   吴沿友 2 *   谢腾祥 3   李海涛 2  
文摘 岩溶碳汇呈现两种不同观点:(1)岩溶碳汇巨大,其机理在于岩溶区藻类及光合细菌利用碳酸氢根离子(HCO_3~-)实现光合作用,从动力学上加速了岩溶风化过程,促进大气CO_2的溶解。(2)岩溶区碳酸盐岩的风化作用,产生HCO_3~-,随后产生等量的阳离子在海洋中进行碳酸盐岩的沉积作用,这仅仅体现的是碳酸盐岩的搬运作用,不能体现碳汇,在长期尺度上仅仅有硅酸盐岩风化产生净碳汇。文章抓住岩石风化产生HCO_3~-与微藻光合作用利用HCO_3~-的耦合点,分析了典型代表性水生生物-微藻在无机碳利用上对岩石风化及碳汇的影响。从微藻光合无机碳利用机制以及光合作用关键性酶一碳酸酐酶(CA)作用两方面,论证了微藻生长对岩石风化及其碳汇的的促进作用;同时论述高pH、高HCO_3~-的风化环境对微藻生长影响。获得以下新认识:(1)微藻通过胞外碳酸酐酶(CAex)利用了大量HCO_3~-,加速岩石风化,并促使风化朝着形成HCO_3~-的方向进行;(2)微藻加速钙镁硅酸盐岩风化,风化溶出的Ca~(2+)、 Mg~(2+)会促使碳酸盐岩的沉积,因此微藻加速硅酸盐岩风化形成净碳汇;(3)长时间尺度下,单纯的碳酸盐岩化学风化并不能直接产生净碳汇,但微藻对HCO_3~-利用使得碳酸盐岩风化朝着HCO_3~-转化方向进行,微藻参与碳酸钙沉积作用的同时转化无机碳为惰性有机碳,产生碳汇。故微藻通过CAex的作用,催化加速HCO_3~-与CO_2之间的转化,形成水体HCO_3~-消耗的动力基础,微藻无机碳利用对岩石风化具有促进作用,从而调节大气CO_2、浓度变化。基于当前研究,提出三点展望:(1)开展岩溶区区域水体系统的岩石风化、水生生物碳汇评估成为解决当前区域碳收支不平衡问题的关键;(2)查明岩石风化作用中生物作用碳转化机理及转化量,解决单纯的水化学径流法计算岩石风化碳汇精度不够问题;(3)构建光合生物参与下的新的评估方法,评估当前岩石风化在水生生物、水循环作用下的碳汇的时间尺度问题,厘清岩石风化碳汇在碳收支中的贡献。
其他语种文摘 The carbon sink on rock weathering is widely discussed for reducing global atmospheric carbon dioxide (CO_2). Two different views on karst carbon sink are proposed. One is that the karst carbon sink is huge because bicarbonate ion (HCO_3~-) is used by the photosynthesis of algae and photosynthetic bacteria in karst areas, which dynamically accelerates the process of karst weathering and subsequently promote the dissolution of atmospheric CO_2. Another is that the weathering of carbonate rock generates HCO_3~-, and then the equivalent calcium ions (Ca~(2+)) and Magnesium ions (Mg~(2+)) are produced for the deposition of carbonate rock on the sea floor as the river enters the ocean. This process only reflects the transport of carbonate rock instead of the carbon sink because only the weathering of silicate rock may generate the net carbon sink in the long term. By literature review in this paper, the effects of microalgae (a typical aquatic organism) on rock weathering and its carbon sink are discussed based on the coupling between inorganic carbon utilization of microalgae in photosynthesis and HCO_3~- produced from rock-weathering. The facilitation on rock-weathering and its carbon sink by microalgae growth is demonstrated from two aspects, namely, the utilization mechanism of inorganic carbon and the action of carbonic anhydrase (the key enzyme of photosynthesis) in microalgae. Besides, the biomass of microalgae, in turn, is enhanced by the effects of weathering-environment, such as, higher pH value and higher HCO_3~-. In this study, the following three arguments are proposed. Firstly, the weathering is accelerated because of the continuous consumption of HCO_3~- utilized by catalysis of extracellular carbonic anhydrase (CAex) in microalgae, which makes the weathering towards the direction on forming HCO_3~-. Secondly, the microalgae can accelerate the weathering of calcium-magnesium silicate rocks, and Ca~(2+) and Mg~(2+) dissolved out by weathering may, in turn, facilitate the deposition of carbonate rock, hence a net carbon sink is generated. Thirdly, pure chemical weathering of carbonate rock cannot directly generate a net carbon sink at long time scale, but the HCO_3~- utilization from CO_2 in microalgae makes the weathering of carbonate rock proceed in the direction of HCO_3~- conversion. In the process of calcium carbonate deposition involved by microalgae, inorganic carbon is converted into recalcitrant organic carbon and thus the carbon sink is generated. Research findings can be concluded that through the CAex effect, the catalysis and acceleration of conversion of HCO_3~- to CO_2 by microalgae will form the dynamic basis of water HCO_3~- consumption. The utilization of inorganic carbon in microalgae can facilitate rock weathering, and hence the concentration of atmospheric CO_2 will be regulated. In this study, three aspects of prospect are also put forward. Firstly, to address the regional unbalance of carbon budget, it is crucial to assess the carbon sink of rock weathering under aquatic organism in karst areas. Besides, to improve the precision of calculating carbon sink of rock-weathering by hydrochemical runoff method, the mechanism and amount of biological carbon conversion in rock weathering should be determined. Finally, it is urgent to establish a new method to assess the time scale of carbon sink of rock weathering under the effects of aquatic organisms by water-cycle, which can clarify the contribution of carbon sink of rock weathering to the carbon budget.
来源 中国岩溶 ,2023,42(1):1-18 【扩展库】
DOI 10.11932/karst20230101
关键词 微藻 ; 风化碳汇 ; HCO_3~- ; 碳酸酐酶 ; CO_2
地址

1. 贵州省分析测试研究院, 贵州, 贵阳, 550000  

2. 中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550081  

3. 西南科技大学环境与资源学院, 四川, 绵阳, 621000

语种 中文
文献类型 研究性论文
ISSN 1001-4810
学科 地质学
基金 贵州省高层次创新型人才培养项目"百层次" ;  国家自然科学基金 ;  贵州科学院青年科学基金
文献收藏号 CSCD:7457355

参考文献 共 130 共7页

1.  IPCC. Climate Change 2021: The Physical Science Basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change,2021 CSCD被引 227    
2.  IPCC. Climate Change 2013: The Physical Science Basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change,2013 CSCD被引 363    
3.  Foote E. Circumstances affecting the heat of the sun's rays. American Journal of Science and Arts,1856:382-383 CSCD被引 1    
4.  Tyndall J. The Bakerian Lecture: On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption, and conduction. Philosophical Transactions of the Royal Society of London,1861,151:1-36 CSCD被引 1    
5.  袁道先. 现代岩溶学,2016 CSCD被引 56    
6.  Friedlingstein P. Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. Journal of Climate,2006,19(14):3337-3353 CSCD被引 63    
7.  Jones C D. Quantifying process-level uncertainty contributions to TCRE and carbon budgets for meeting Paris Agreement climate targets. Environmental Research Letters,2020,15(7):1-20 CSCD被引 1    
8.  Raupach M R. The declining uptake rate of atmospheric CO_2 by land and ocean sinks. Biogeosciences,2014,11(13):3453-3475 CSCD被引 2    
9.  Williams R G. Carbon-cycle feedbacks operating in the climate system. Current Climate Change Reports,2019,5(4):282-295 CSCD被引 6    
10.  Friedlingstein P. Global carbon budget 2020. Earth System Science Data,2020,12(4):3269-3340 CSCD被引 152    
11.  Chamberlin T C. A group of hypotheses bearing on climatic changes. Journal of Geology,1897,5(7):653-683 CSCD被引 3    
12.  Ekholm N. On the variations of the climate of the geological and historical past and their causes. Quarterly Journal of the Royal Meteorological Society,1901,27(117):1-62 CSCD被引 5    
13.  Berner R A. A new look at the long-term carbon cycle. Gsa Today,1999,9(11):1-6 CSCD被引 3    
14.  Foster G L. Future climate forcing potentially without precedent in the last 420 million years. Nature Communications,2017,8:14845 CSCD被引 55    
15.  Gutjahr M. Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum. Nature,2017,548(7669):573-577 CSCD被引 19    
16.  Raymond P A. Global carbon dioxide emissions from inland waters. Nature,2013,503(7476):355-359 CSCD被引 146    
17.  Regnier P. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience,2013,6(8):597-607 CSCD被引 82    
18.  Lauerwald R. Spatial patterns in CO_2 evasion from the global river network. Global Biogeochemical Cycles,2015,29(5):534-554 CSCD被引 19    
19.  Drake J E. Three years of soil respiration in a mature eucalypt woodland exposed to atmospheric CO_2 enrichment. Biogeochemistry,2018,139(1):85-101 CSCD被引 3    
20.  Behrenfeld M J. Climate-mediated dance of the plankton. Nature Climate Change,2014,4(10):880-887 CSCD被引 6    
引证文献 1

1 钟亮 基于Web of Science的岩溶碳循环及碳汇效应研究动态分析 中国岩溶,2024,43(4):766-779,809
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号