东南亚锡矿带泰国沙蒙矿床花岗岩成因及其对锡成矿作用的指示
Petrogenesis of granites from the Samoeng deposit in Thailand within the Southeast Asian tin belt,and their implications for tin mineralization
查看参考文献59篇
文摘
|
本文围绕泰国沙蒙矿床锡成矿相关的中粗粒黑云母花岗岩及远离矿体的细粒角闪石黑云母花岗岩开展了全岩地球化学、锆石U-Pb年代学及原位Hf同位素研究。锆石U-Pb年龄显示两类花岗岩分别形成于210.9±1.1Ma和206.5±1.0Ma。二者均具有富碱(全碱含量为5.81%~8.22%)、弱过铝-强过铝(A/CNK= 1.01~1.14)、相对富集Rb、Th、Pb等元素、低的TFeO/MgO(0.75~3.54)和10000Ga/Al(2.21~2.66)比值等特征。中粗粒黑云母花岗岩具有原生白云母,高的K_2O/Na_2O(1.56~2.50)和Rb/Sr(2.26~2.60)比值,且其锆石具有较高的P含量,属于典型的S型花岗岩。而细粒角闪石黑云母花岗岩普遍发育角闪石,具有低的K_2O/Na_2O (0.45~1.11)和Rb/Sr(0.54~1.18)比值,且其锆石具有较低的P含量,应属于典型的I型花岗岩。两种花岗岩具有截然不同的Hf同位素组成,其中中粗粒黑云母花岗岩具有明显低的ε_(Hf)(t)值(-20.0~-8.9),对应的二阶段模式年龄t_(DM2)值为2.5~1.8Ga(平均值为2.0Ga),而细粒角闪石黑云母花岗岩具有偏高的ε_(Hf)(t)值(-4.6~ 5.5),二阶段模式年龄t_(DM2)值为1.5~0.9Ga(平均值为1.1Ga)。它们均形成于古特提斯洋闭合的碰撞后挤压向伸展转换构造背景下,具有相近的岩浆温度和中等演化程度(DI=79.6~88.0、SiO_2=67.57%~72.97%及锆石Zr/Hf=29.8~64.9)。中粗粒黑云母花岗岩可能起源于古元古代的变质杂砂岩的部分熔融且具有较低的岩浆氧逸度(ΔFMQ平均为-4.93),而细粒角闪石黑云母花岗岩源区主要为新元古代新生地壳,并具有部分古老地壳变沉积岩源区物质的加入,具较前者相对偏高的岩浆氧逸度(ΔFMQ平均为-2.76)。源区性质和岩浆氧逸度条件可能是制约沙蒙矿区花岗岩锡成矿最重要的控制因素。 |
其他语种文摘
|
Our study involved zircon U-Pb dating and in-situ Hf isotope,and whole-rock geochemical analyses for the medium-coarse-grained biotite granites associated with tin mineralization and the fine-grained hornblende biotite granites far away from the ore bodies from the Samoeng deposit,in Thailand.Zircon U-Pb ages show that the two granites were formed at 210.9±1.1Ma and 206.5±1.0Ma,respectively. Both granites are characteristic of rich in alkali with total alkali content of 5.81%~8.22%,relatively rich in Rb,Th,and Pb,weakly to strongly peraluminous(A/CNK=1.01~1.14)and low in TFeO/MgO (0.75~3.54)and 10000Al/Ga(2.21~2.66)values.The medium-coarse-grained biotite granites have primary muscovite and relatively high K_2O/Na_2O (1.56~2.50)and Rb/Sr(2.26~2.60)ratios,with high P content in their zircons,belonging to typical S-type granites.While the fine-grained amphibole biotite granites are wide development of amphibole,and have relatively low K_2O/Na_2O(0.45~1.11)and Rb/Sr(0.54~1.18)ratios,with low content of P in their zircons,which can be classified as typical I-type granites.The two granites have quite different Hf isotopic compositions.The medium-coarse-grained biotite granites have relatively lowε_(Hf)(t)values(-20.0 to-8.9),with the corresponding two-stage Hf model age of 1.8 to 2.5Ga(average values of 2.0Ga).In contrast,the fine hornblende biotites granite have relatively highε_(Hf)(t)values(-4.6 to 5.5),with the two-stage Hf model age of 0.9to 1.5Ga (average values of 1.1Ga).Both two granites were formed in a post-collisional tectonic transition(from compression to extension)related to the closed Paleo-Tethys Ocean,and have similar magmatic temperatures and moderate fractionated(DI=79.6~88.0,SiO_2=67.57%~72.97%,and zircon Zr/Hf values=29.8~64.9).The mid-coarse-grained biotite granites were suggested to be derived from Paleoproterozoic metagreywackes with low magmatic oxygen fugacities(averageΔFMQ -4.93),whereas the fine-grained amphibolite biotite granites mainly originated from juvenile meta-igneous rocks with the input of ancient meta-sedimentary component,and have relatively high magmatic oxygen fugacities (averageΔFMQ -2.76).We think the nature of the source region and magmatic oxygen fugacity condition could be the most important controlling factors for tin mineralization in the Samoeng deposit. |
来源
|
地质学报
,2023,97(4):1228-1244 【核心库】
|
DOI
|
10.19762/j.cnki.dizhixuebao.2023108
|
关键词
|
花岗岩成因
;
物理化学条件
;
锡成矿作用
;
东南亚
;
泰国沙蒙矿床
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0001-5717 |
学科
|
地质学 |
基金
|
中国科学院国际合作局国际伙伴计划项目
;
贵州省高层次留学人才创新创业择优项目
;
国家自然科学基金项目
;
中国科学院西部之光人才培养计划
;
中国科学院青年创新促进会项目
;
贵州省项目
;
贵州省教育厅青年科技人才成长项目
|
文献收藏号
|
CSCD:7455292
|
参考文献 共
59
共3页
|
1.
Altherr R. I-type plutonism in a continental backarc setting:Miocene granitoids and monzonites from the central Aegean Sea, Greece.
Contributions to Mineralogy and Petrology,2002,143(4):397-415
|
CSCD被引
70
次
|
|
|
|
2.
Ballard J R. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III)in zircon: application to porphyry copper deposits of northern Chile.
Contributions to Mineralogy and Petrology,2002,144(3):347-364
|
CSCD被引
227
次
|
|
|
|
3.
Boynton W V. Geochemistry of the rare earth elements: meteorite studies.
REE Geochemistry,1984
|
CSCD被引
1
次
|
|
|
|
4.
Burnham A D. Formation of Hadean granites by melting of igneous crust.
Nature Geoscience,2017,10(6):457-461
|
CSCD被引
15
次
|
|
|
|
5.
Chappell B W. Two contrasting granite type.
Pacific Geology,1974,8:173-174
|
CSCD被引
527
次
|
|
|
|
6.
Chappell B W. Two contrasting granite types: 25years later.
Australian Journal of Earth Sciences,2001,48(4):489-499
|
CSCD被引
268
次
|
|
|
|
7.
Coogan L A. Do the trace element compositions of detrital zircons require Hadean continental crust?.
Geology,2006,34(8):633-636
|
CSCD被引
7
次
|
|
|
|
8.
Ferry J M. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers.
Contributions to Mineralogy and Petrology,2007,154(4):429-437
|
CSCD被引
291
次
|
|
|
|
9.
Gardiner N J. The closure of Palaeo-Tethys in Eastern Myanmar andnorthern Thailand:new insights from zircon U-Pb and Hf-isotope data.
Gondwana Research,2016,39:401-422
|
CSCD被引
8
次
|
|
|
|
10.
Griffin W L. Archean crustal evolution in the northern Yilgam Craton: U-Pb and Hf-isotope evidence from detrital zircons.
Precambrian Research,2004,131(3):231-282
|
CSCD被引
362
次
|
|
|
|
11.
Irvine T N. A guide to the chemical classification of the common volcanic rocks.
Canadian Journal of Earth Sciences,1971,8(5):523-548
|
CSCD被引
1043
次
|
|
|
|
12.
Ishihara S. The magnetite-series and ilmenite-series granitic rocks.
Mining Geology,1977,27:293-305
|
CSCD被引
63
次
|
|
|
|
13.
Jiang Hai. Late Triassic post-collisional high-K two-mica granites in Peninsular Thailand,SE Asia:petrogenesis and Sn mineralization potential.
Lithos,2021,398/399:106290
|
CSCD被引
2
次
|
|
|
|
14.
Khositanont S.
The genesis of the Sn-W deposits at Samoeng Mine,Thailand:evidence from fluid inclusions.Master thesis,1991
|
CSCD被引
1
次
|
|
|
|
15.
Kirkland C L. Zircon Th/U ratios in magmatic environs.
Lithos,2015,212:397-414
|
CSCD被引
25
次
|
|
|
|
16.
Lehmann B. Formation of tin ore deposits:a reassessment.
Lithos,2020,402/403:105756
|
CSCD被引
7
次
|
|
|
|
17.
Lehmann B. The Bolivian tin province and regional tin distribution in the Central Andes:A reassessment.
Economic Geology,1990,85(5):1044-1058
|
CSCD被引
16
次
|
|
|
|
18.
Li Jinxiang. Geochronology,geochemistry and Sr-Nd-Hf isotopic compositions of Late Cretaceous-Eocene granites in southern Myanmar:Petrogenetic,tectonic and metallogenic implications.
Ore Geology Reviews,2019,112:103031
|
CSCD被引
4
次
|
|
|
|
19.
Linnen R L. The combined effects of fO_2and melt composition on SnO_2solubility and tin diffusivity in haplogranitic melts.
Pergamon,1996,60(24):4965-4976
|
CSCD被引
1
次
|
|
|
|
20.
Liu Junlai. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: Geochronology, geochemistry and tectonic implications.
Gondwana Research,2012,22:628-644
|
CSCD被引
47
次
|
|
|
|
|