基于金属稳定同位素的矿冶影响区土壤重金属污染源解析研究进展
Advances in the Application of Metal Stable Isotopes for the Identification of Heavy Metal Sources in Soil in Mining-and Smelting-Affected Areas
查看参考文献156篇
文摘
|
矿冶影响区重金属的迁移和富集造成了严重的土壤重金属污染问题。深入了解矿冶影响区土壤中重金属的来源和迁移途径是开展土壤重金属污染高效治理的科学基础。近年来飞速发展的金属稳定同位素在识别土壤重金属污染来源和明确重金属迁移过程等方面有较大的应用优势。对金属稳定同位素分析技术、示踪原理及溯源模型进行系统分析,综述了矿产开采及冶炼过程(高温冶炼、电化学工艺和尾矿风化)导致的金属稳定同位素分馏研究进展,并总结了金属稳定同位素在矿冶影响区土壤重金属污染源解析的代表性应用成果。V同位素体系处于初期研究阶段,土壤重金属源解析应用研究相对缺乏;Zn、Cd和Hg同位素在识别高温冶炼过程相关的重金属污染源时有较大优势;Cu、Tl和Ni同位素可直接指示土壤中矿石的输入。但是,目前还存在部分金属稳定同位素分析难度大、溯源模型应用限制多、金属同位素易发生分馏导致源不确定等问题。在未来的工作中,需进一步探索和优化金属同位素分析方法,建立更多金属稳定同位素指纹图谱,开发适用性更强、结果更精确的溯源模型,明确复杂界面过程和反应中的金属稳定同位素分馏特征及机理,加强金属稳定同位素在追溯土壤重金属污染形成的时间尺度等方面的实际应用。 |
其他语种文摘
|
Heavy metal migration and enrichment in areas affected by mining and smelting cause severe soil contamination. A thorough understanding of the sources and migration of heavy metals in the soil is the scientific basis for the efficient treatment of soil pollution. In recent years, metal stable isotopes have shown great advantages in identifying sources of soil heavy metal contamination and analyzing heavy metal migration processes, thus acting as powerful tools to trace the environmental behavior of heavy metals. In this paper, we reviewed the analysis technology, tracing principles, and tracing models of metal stable isotopes, determined the isotope fractionations caused by mineral mining and smelting processes (high-temperature smelting, electrochemical processes, and tailing weathering), and discussed the representative applications of metal stable isotopes in the traceability of soil pollution in mining-and smelting-affected areas. The V isotope system is in the initial stages of investigation, and its applications in heavy metal soil source analysis are relatively lacking. Zn, Cd, and Hg isotopes are advantageous for identifying heavy metal contamination sources associated with high-temperature smelting processes. Cu, Tl, and Ni isotopes can directly indicate the ore content of the soil. However, some problems remain, such as the difficulty in analyzing certain systems of metallic stable isotopes, limitations in the application of tracer models, and source uncertainties due to isotope fractionation. Therefore, in the future, it will be necessary to further explore and optimize metal isotope analysis methods, establish more metal stable isotope fingerprints, develop traceability models with stronger applicability and more accurate results, comprehend the characteristics and mechanisms of isotope fractionation in complex interfacial processes and reactions, and strengthen the practical application of metal stable isotopes to trace the history of soil heavy metal pollution. |
来源
|
地球科学进展
,2023,38(4):331-348 【核心库】
|
DOI
|
10.11867/j.issn.1001-8166.2022.088
|
关键词
|
金属稳定同位素
;
矿冶活动
;
源解析
;
土壤重金属污染
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-8166 |
学科
|
自然地理学;环境污染及其防治 |
基金
|
国家自然科学基金国家杰出青年科学基金
;
中国科学院前沿科学重点研究项目
|
文献收藏号
|
CSCD:7450313
|
参考文献 共
156
共8页
|
1.
Martins W B R. Mining in the Amazon: importance, impacts, and challenges to restore degraded ecosystems. Are we on the right way?.
Ecological Engineering,2022:174
|
CSCD被引
1
次
|
|
|
|
2.
王海洋. 矿区周边农田土壤重金属分布特征及污染评价.
环境科学学报,2022,43(4):2104-2114
|
CSCD被引
1
次
|
|
|
|
3.
骆欣. 矿区土壤重金属污染修复技术研究进展.
华北科技学院学报,2019,16(1):49-54,62
|
CSCD被引
1
次
|
|
|
|
4.
李琳丽. 汞矿区土壤重金属迁移转化及治理技术研究综述.
有色金属工程,2022,12(2):128-137
|
CSCD被引
4
次
|
|
|
|
5.
Liu Y H. Lithologic controls on the mobility of Cd in mining-impacted watersheds revealed by stable Cd isotopes.
Water Research,2022,220
|
CSCD被引
1
次
|
|
|
|
6.
Zhang L. Study of the micromorphology and health risks of arsenic in copper smelting slag tailings for safe resource utilization.
Ecotoxicology and Environmental Safety,2021:219
|
CSCD被引
1
次
|
|
|
|
7.
Jarup L. Hazards of heavy metal contamination.
British Medical Bulletin,2003,68:167-182
|
CSCD被引
154
次
|
|
|
|
8.
Diaconu M. Characterization of heavy metal toxicity in some plants and microorganisms-a preliminary approach for environmental bioremediation.
New Biotechnol,2020,56:130-139
|
CSCD被引
5
次
|
|
|
|
9.
Abliz A. Spatial distribution, source, and risk assessment of soil toxic metals in the coal-mining region of northwestern China.
Arabian Journal of Geosciences,2018,11(24)
|
CSCD被引
2
次
|
|
|
|
10.
Satapathy S. Source identification, environmental risk assessment and human health risks associated with toxic elements present in a coastal industrial environment, India.
Environmental Geochemistry and Health,2018,40(6):2243-2257
|
CSCD被引
1
次
|
|
|
|
11.
Tao X Z. Effect of acid mine drainage on a karst basin: a case study on the high-As coal mining area in Guizhou province, China.
Environmental Earth Sciences,2012,65(3):631-638
|
CSCD被引
3
次
|
|
|
|
12.
Chen Y. Pollution status of heavy metals in China's metallic mining areas and treatment measures concerned.
Legislation, technology and practice of mine land reclamation,2014:451-458
|
CSCD被引
1
次
|
|
|
|
13.
Wiederhold J G. Metal stable isotope signatures as tracers in environmental geochemistry.
Environmental Science & Technology,2015,49(5):2606-2624
|
CSCD被引
25
次
|
|
|
|
14.
闫颖. 铅-镉-锌-汞稳定同位素在重金属污染源解析中的研究进展.
环境化学,2020,39(10):2712-2721
|
CSCD被引
7
次
|
|
|
|
15.
陈雅丽. 近十年中国土壤重金属污染源解析研究进展.
农业环境科学学报,2019,38(10):2219-2238
|
CSCD被引
147
次
|
|
|
|
16.
Wang L W. Possible application of stable isotope compositions for the identification of metal sources in soil.
Journal of Hazardous Materials,2021:407
|
CSCD被引
1
次
|
|
|
|
17.
秦建桥. 土壤重金属源解析研究方法与应用.
安徽农业科学,2019,47(20):80-82
|
CSCD被引
2
次
|
|
|
|
18.
吴迪. 土壤重金属污染来源研究综述.
安徽农学通报,2017(23):58-60
|
CSCD被引
2
次
|
|
|
|
19.
Li Z Y. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment.
Science of the Total Environment,2014,468/469:843-853
|
CSCD被引
187
次
|
|
|
|
20.
Ratnayake D M. Novel nickel isolation procedure for a wide range of sample matrices without using dimethylglyoxime for isotope measurements using MC-ICP-MS.
Analytica Chimica Acta,2021:1181
|
CSCD被引
1
次
|
|
|
|
|