星载被动光学遥感大气风场探测技术进展综述
An Overview of Spaceborne Atmospheric Wind Field Measurement with Passive Optical Remote Sensing
查看参考文献99篇
文摘
|
大气风场是表征整个地球大气系统动力学特征的重要参数,也是气象预报、空间天气、气候学等领域业务工作和科学研究必需的基础数据。被动光学遥感是大气风场测量领域的主要技术手段之一。本文综述了基于大气移动目标监测和大气光谱多普勒频移探测的两类天基被动光学大气风场测量技术的研究进展,主要介绍了云导风、红外高光谱水汽示踪、测风干涉仪和多普勒调制气体相关4种风场测量技术的基础物理原理和风速反演基本方法,根据每种星载被动光学测风技术体制分类及特点,介绍了代表性风场探测载荷技术研究进展及应用情况,探讨了星载被动光学大气风场探测技术的未来发展趋势。 |
其他语种文摘
|
Significance Wind field is an important parameter characterizing the dynamic characteristics of the earth's atmospheric system, and it serves as basic data necessary for business work and scientific research in fields such as weather forecasting, space weather, and climatology. The wind field measurement based on satellite remote sensing is not limited by geographical conditions. It can determine the intensity and direction information of the atmospheric wind field at different altitudes by monitoring the motion state of ocean waves, clouds, aerosols, and atmospheric components. It can not only obtain the observation data of ocean, desert, and polar regions, which are difficult to be collected by conventional methods, but also obtain the profile information of the wind field along the height distribution. As one of the main techniques in atmospheric wind field measurement, passive optical remote sensing has the characteristics of high accuracy, large altitude coverage, and small resource occupation. Great progress in the past half century has been made, and various wind measurement technologies have been developed such as atmospheric motion vectors, infrared hyperspectral analysis of water vapor, wind imaging interferometer, and Doppler modulated gas correlation, which can realize wind field measurement in an altitude ranging from 1 km near the surface to 300-400 km and form a reliable verification and capability complementation with active wind field measurement technologies such as lidar and microwave. In order to promote the development of spaceborne passive optical remote sensing for measuring atmospheric wind fields, it is necessary to summarize and discuss the existing research progress and future development trends, so as to provide a reference for the development of future passive optical remote sensing detection technology for atmospheric wind field and the task planning in atmospheric wind field detection. Progress This review focuses on two types of spaceborne optical passive techniques for wind field measurement based on atmospheric motion vector monitoring and atmospheric spectral Doppler shift detection. The fundamental theories, basic inversion methods, and the progress of research and application of representative payloads of various passive wind field detection technologies are summarized (Table 4). The atmospheric motion vector detection technology relies on cloud map observation to realize wind field detection. It has the characteristics of high spatial resolution and high detection accuracy and can obtain meter-level and precise wind field data at a sub-kilometer scale. However, limited by its detection technology mechanism, its detection altitude and efficiency are also significantly restricted. Infrared hyperspectral wind field measurement technology is based on infrared images of specific water vapor spectral channels and profile data to track the movement of characteristic image targets at specific altitudes to invert atmospheric wind speed, which is used for troposphere wind measurement, with high vertical resolution and profile data, and it is less affected by the cloud. Compared with those of the cloud-derived motion vector (CMV) technology, its measurement accuracy and horizontal spatial resolution of wind speed and direction need to be improved. However, as infrared hyperspectral loading and wind field inversion algorithms develop, infrared hyperspectral wind field measurement technology will become an important technology for troposphere wind. The wind field interferometer obtains the interferogram of the fine atmospheric spectrum from the limb observation, inverts the Doppler frequency shift of the atmospheric spectrum through the intensity position or phase change in the interferogram, and then realizes the measurement of the atmospheric wind field. |
来源
|
光学学报
,2023,43(6):0601011 【核心库】
|
DOI
|
10.3788/AOS221462
|
关键词
|
大气光学
;
大气风场
;
云导风
;
红外高光谱
;
测风干涉仪
;
多普勒调制气体相关
|
地址
|
1.
中国科学院西安光学精密机械研究所, 中国科学院光谱成像技术重点实验室, 陕西, 西安, 710119
2.
中国科学院大学, 北京, 100049
3.
北京应用气象研究所, 北京, 100029
4.
国家卫星气象中心(国家空间天气监测预警中心), 中国气象局空间天气重点开放实验室, 北京, 100081
5.
中国地质大学(武汉)地球物理与空间信息学院, 湖北, 武汉, 430074
6.
国防科技大学气象海洋学院, 湖南, 长沙, 410073
7.
中国科学院国家空间科学中心, 空间天气学国家重点实验室, 北京, 100088
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0253-2239 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
陕西省自然科学基金
;
中国科学院西部青年学者项目
;
中国科学院西部之光交叉团队项目
|
文献收藏号
|
CSCD:7448338
|
参考文献 共
99
共5页
|
1.
Zhang S P. Tidal influence on the oxygen and hydroxyl nightglows: wind imaging interferometer observations and thermosphere/ionosphere/mesosphere electrodynamics general circulation model.
Journal of Geophysical Research,2001,106(A10):21381-21393
|
CSCD被引
4
次
|
|
|
|
2.
Fleming E L. Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude.
Advances in Space Research,1990,10(12):11-59
|
CSCD被引
16
次
|
|
|
|
3.
Pierce R M. Wind speed measurements of Dopplershifted absorption lines using two-beam interferometry.
Applied Optics,2012,51(12):1853-1864
|
CSCD被引
4
次
|
|
|
|
4.
Zhu X. Diagnosis of dynamics and energy balance in the mesosphere and lower thermosphere.
Journal of the Atmospheric Sciences,2001,58(16):2441-2454
|
CSCD被引
3
次
|
|
|
|
5.
Forsythe M.
Atmospheric motion vectors: past, present and future,2022
|
CSCD被引
1
次
|
|
|
|
6.
Velden C. Environmental satellite data utilization: determination of wind vectors by tracking features on sequential moisture analyses derived from hyperspectral IR satellite soundings.
Review of Policy Research,2004,27(27):491-507
|
CSCD被引
1
次
|
|
|
|
7.
Shepherd G G. Development of wind measurement systems for future space missions.
Acta Astronautica,2015,115:206-217
|
CSCD被引
7
次
|
|
|
|
8.
Mccleese D J. Remote sensing of stratospheric and mesospheric winds by gas correlation electrooptic phasemodulation spectroscopy.
Applied Optics,1983,22(17):2528
|
CSCD被引
3
次
|
|
|
|
9.
Key J R. Cloud-drift and water vapor winds in the polar regions from MODISIR.
IEEE Transactions on Geoscience and Remote Sensing,2003,41(2):482-492
|
CSCD被引
3
次
|
|
|
|
10.
Tokuno M.
Operational system for extracting cloud motion and water vapor motion winds from GMS-5 image data,2022
|
CSCD被引
1
次
|
|
|
|
11.
Tokuno M.
Improvements in the method to extract operational cloud motion winds and water vapor motion winds of the GMS-5 system,2022
|
CSCD被引
1
次
|
|
|
|
12.
蒋薇. 基于卫星云图的风矢场(云导风)度量模型与算法探讨.
数学的实践与认识,2013,43(15):123-138
|
CSCD被引
1
次
|
|
|
|
13.
Velden C S. Uppertropospheric winds derived from geostationary satellite water vapor observations.
Bulletin of the American Meteorological Society,1997,78(2):173-195
|
CSCD被引
17
次
|
|
|
|
14.
Le Marshall J. Cloud and water vapour motion vectors in tropical cyclone track forecasting: a review.
Meteorology and Atmospheric Physics,1998,65(3):141-151
|
CSCD被引
3
次
|
|
|
|
15.
Dong C H. An overview of a new Chinese weather Satellite FY-3A.
Bulletin of the American Meteorological Society,2009,90(10):1531-1544
|
CSCD被引
56
次
|
|
|
|
16.
张志清. FY-4卫星应用和发展.
上海航天,2017,34(4):8-19
|
CSCD被引
34
次
|
|
|
|
17.
陆风. 风云四号气象卫星成像特性及其应用前景.
海洋气象学报,2017,37(2):1-12
|
CSCD被引
40
次
|
|
|
|
18.
刘志明. 静止气象卫星云导风的结果分析.
吉林气象,2002,9(3):15-18
|
CSCD被引
2
次
|
|
|
|
19.
赵航.
静止气象卫星晴空区导风信号提取算法改进与应用分析,2014
|
CSCD被引
1
次
|
|
|
|
20.
张淳民. 电磁学多普勒效应在高层大气探测中的应用.
大学物理,2019,38(2):52-54,59
|
CSCD被引
1
次
|
|
|
|
|