温度和助剂含量对放电等离子烧结SiC陶瓷的影响
Effects of temperature and additives content on SiC ceramics prepared by spark plasma sintering
查看参考文献29篇
文摘
|
采用Al_2O_3-Y_2O_3-CaO作为烧结助剂制备SiC陶瓷,通过阿基米德排水法、XRD、SEM、TEM及维氏硬度测试等方法,探究烧结温度及烧结助剂含量对SiC陶瓷相对密度、物相结构、微观形貌和力学性能的影响。结果表明:在1300~ 1800℃下,SiC陶瓷相对密度、硬度以及断裂韧性都呈现出先增加后降低的趋势,在1700℃达到最大值;1700~1800℃发生了β-SiC向α-SiC的相变;减少烧结助剂含量会增加晶界结合强度,提升硬度,并抑制晶粒生长;在1700℃和7%(质量分数)烧结助剂含量的条件下,获得了最佳的烧结效果,相对密度、硬度和断裂韧度分别为97.9%,23.3GPa和4.1MPa·m~(1/2)。 |
其他语种文摘
|
SiC ceramics were sintered with Al_2O_3-Y_2O_3-CaO as additives.The effects of sintering temperature and additives content on the relative density,polytype,microstructure and mechanical properties of SiC ceramics were investigated by Archimedes drainage method,XRD,SEM,TEM and Vickers hardness test.The results show that the relative density,hardness and fracture toughness of SiC ceramics increase firstly and then decrease from 1300 ℃to 1800 ℃,and reach the maximum at 1700℃.The phase transformation fromβ-SiC toα-SiC occurs between 1700℃and 1800℃.Reducing the content of additives can increase the grain boundary bonding strength,and can improve the hardness and inhibition of the grain growth.Under the condition of 1700℃and 7% (mass fraction) additives content,the best sintering results are obtained,with relative density,hardness and toughness of 97.9%,23.3GPa and 4.1MPa·m~(1/2),respectively. |
来源
|
材料工程
,2023,51(3):52-58 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000584
|
关键词
|
碳化硅
;
烧结温度
;
烧结助剂
;
微观形貌
;
力学性能
|
地址
|
中国航发北京航空材料研究院, 先进复合材料国防科技重点实验室, 北京, 100095
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
文献收藏号
|
CSCD:7445143
|
参考文献 共
29
共2页
|
1.
焦健. 新一代发动机高温材料——陶瓷基复合材料的制备、性能及应用.
航空制造技术,2014(7):62-69
|
CSCD被引
26
次
|
|
|
|
2.
An Q. Machining of SiC ceramic matrix composites: A review.
Chinese Journal of Aeronautics,2021,34(4):540-567
|
CSCD被引
41
次
|
|
|
|
3.
刘虎. 国外航空发动机用SiC_f/SiC复合材料的材料级性能测试研究进展.
材料工程,2018,46(11):1-12
|
CSCD被引
23
次
|
|
|
|
4.
刘巧沐. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战.
材料工程,2019,47(2):1-10
|
CSCD被引
57
次
|
|
|
|
5.
Maitre A. Role of boron on the spark plasma sintering of anα-SiC powder.
Journal of the European Ceramic Society,2008,28(9):1881-1890
|
CSCD被引
1
次
|
|
|
|
6.
Khodaei M. The effect of oxide,carbide,nitride and boride additives on properties of pressureless sintered SiC:a review.
Journal of the European Ceramic Society,2019,39(7):2215-2231
|
CSCD被引
9
次
|
|
|
|
7.
Raju K. Sintering additives for SiC based on the reactivity: a review.
Ceramics International,2016,42(16):17947-17962
|
CSCD被引
9
次
|
|
|
|
8.
Noviyanto A. Rare-earth nitrate additives for the sintering of silicon carbide.
Journal of the European Ceramic Society,2013,33:2915-2923
|
CSCD被引
3
次
|
|
|
|
9.
Li C. Microstructure and mechanical properties of spark plasma sintered SiC ceramics aided by B_4C.
Ceramics International,2020,46(8):10142-10146
|
CSCD被引
6
次
|
|
|
|
10.
Li J F. Hot isostatically pressed SiC-AIN powder mixtures:effect of milling on solid-solution formation and related properties.
Journal of the American Ceramic Society,2010,81(6):1445-1452
|
CSCD被引
1
次
|
|
|
|
11.
Hu Z Y. A review of multiphysical fields induced phenomena and effects in spark plasma sintering:fundamentals and applications.
Materials & Design,2020,191:108662
|
CSCD被引
27
次
|
|
|
|
12.
Dudina D V. Fabrication of porous materials by spark plasma sintering:a review.
Materials,2019,12(3):541
|
CSCD被引
6
次
|
|
|
|
13.
Guillon O. Field-assisted sintering technology/spark plasma sintering: mechanisms,materials,and technology developments.
Advanced Engineering Materials,2014,16(7):830-849
|
CSCD被引
42
次
|
|
|
|
14.
Lara A. Densification of additive-free polycrystallineβ-SiC by spark-plasma sintering.
Ceramics International,2012,38(1):45-53
|
CSCD被引
3
次
|
|
|
|
15.
Rahman A. Mechanical characterization of fine grained silicon carbide consolidated using polymer pyrolysis and spark plasma sintering.
Ceramics International,2014,40(8):12081-12091
|
CSCD被引
2
次
|
|
|
|
16.
Kim Y H. Mechanical and thermal properties of silicon carbide ceramics with yttria-scandia-magnesia.
Journal of the European Ceramic Society,2019,39:144-149
|
CSCD被引
4
次
|
|
|
|
17.
Kim K J. Highly resistive SiC ceramics sintered with Al_2O_3-AIN-Y_2O_3additions.
Ceramics International,2017,43(6):5343-5346
|
CSCD被引
2
次
|
|
|
|
18.
Khodaei M. The effect of TiO_2additive on the electrical resistivity and mechanical properties of pressureless sintered SiC ceramics with Al_2O_3-Y_2O_3.
International Journal of Refractory Metals & Hard Materials,2018,76:141-148
|
CSCD被引
2
次
|
|
|
|
19.
陈鹏. 基于SLS/CIP工艺SiC陶瓷的制备及其性能.
材料工程,2019,47(3):87-93
|
CSCD被引
5
次
|
|
|
|
20.
Sabu U. Spark plasma sintering of silicon carbide with Al_2O_3and CaO:densification behavior, phase evolution and mechanical properties.
Transactions of the Indian Ceramic Society,2018,77(4):202-208
|
CSCD被引
1
次
|
|
|
|
|