宽温域压电材料的研究进展及其柔性化设计
Research progress and flexible design of piezoelectric materials with wide temperature range
查看参考文献80篇
文摘
|
近年来,随着汽车、石油、核电和航空航天等高温领域的发展,应用于极端环境中的无损检测、可持续自供电设备用宽温域压电材料成为研究热点。然而,具有优异压电性和高温稳定性的宽温域压电材料,由于质脆、硬度大,致使所制器件无法兼具柔性及高温稳定性而在高温精密化作业、可穿戴健康检测等应用中受到极大限制。因此基于宽温域压电材料的柔性化设计,以实现耐高温柔性压电装置的制备并最终大幅拓宽压电装置的高温工作潜力,成为目前压电器件的重要发展方向。本文首先针对300℃以下环境中应用的压电材料(锆钛酸铅、钛酸钡和碱金属铌酸盐)和500~1000℃环境中应用的Ⅲ族氮化物的研究进展进行了介绍,然后分析基于这些材料的柔性化设计技术及柔性化设计过程中所用衬底或复合基体的种类对最终器件高温稳定性的影响。 |
其他语种文摘
|
With the development of high temperature fields,such as automotive,petroleum,nuclear power and aerospace,piezoelectric materials with wide temperature range,as the core component of nondestructive testing and sustainable self-powered equipment used in these extreme environments, have become the hotspot of research in recent years.However,even the piezoelectric materials with wide temperature range owning excellent piezoelectricity and high temperature stability,the devices made of them could not have both flexibility and high-temperature resistance due to the embrittlement and hardness,resulting in the limitation in the application of high temperature precision operation and wearable health testing.Therefore,the flexible design of piezoelectric materials with wide temperature range,which can realize the preparation of high-temperature resistant,soft piezoelectric device and ultimately broaden the high temperature potential of device,become an important development direction for piezoelectric field.The research progress of piezoelectric materials with wide temperature range was introduced first in this paper,which includes materials(PZT,BT,KNN)used in the environment below 300 ℃ and Ⅲ-N material used in 500-1000 ℃.Then the flexible design technology was collected based on these materials,including direct-growth,growth-transfer and nanocomposite. In the meantime,the influence of types of substrates or composite matrix on the hightemperature stability of final device was also analyzed. |
来源
|
材料工程
,2023,51(3):39-51 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000611
|
关键词
|
宽温域压电材料
;
柔性耐高温
;
薄膜
;
压电器件
|
地址
|
1.
天津工业大学纺织科学与工程学院, 天津, 300387
2.
天津工业大学材料科学与工程学院, 天津省部共建分离膜与膜过程国家重点实验室, 天津, 300387
3.
南达科他矿业理工学院化学与应用生物系, 拉皮德城, SD57701
4.
迪肯大学前沿纤维研究与创新中心, 吉朗, VIC3216
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金项目
;
天津市自然科学基金重点项目
;
天津工业大学纤维培育基金
|
文献收藏号
|
CSCD:7445142
|
参考文献 共
80
共4页
|
1.
Chandrasekaran S. Micro-scale to nano-scale generators for energy harvesting:self powered piezoelectric,triboelectric and hybrid devices.
Physics Reports,2019,792:1-33
|
CSCD被引
8
次
|
|
|
|
2.
Kim N I. Piezoelectric pressure sensor based on flexible gallium nitride thin film for harsh-environment and high-temperature applications.
Sensors and Actuators A,2020,305:111940
|
CSCD被引
11
次
|
|
|
|
3.
Sun Y. Flexible piezoelectric energy harvester/sensor with high voltage output over wide temperature range.
Nano Energy,2019,61:337-345
|
CSCD被引
3
次
|
|
|
|
4.
Wu T C. The use of flexible ultrasound transducers for the detection of laser-induced guided waves on curved surfaces at elevated temperatures.
Sensors(Basel),2017,17(6):23-24
|
CSCD被引
2
次
|
|
|
|
5.
Liu Z. Large strain and temperature-insensitive piezoelectric effect in high-temperature piezoelectric ceramics.
Journal of Materials Chemistry C,2018,6(3):456-463
|
CSCD被引
7
次
|
|
|
|
6.
Wu J. Quantitative studies of domain evolution in tetragonal BS-PT ceramics in electric poling and thermal depoling processes.
Journal of Materials Chemistry C,2019,7(15):4517-4526
|
CSCD被引
1
次
|
|
|
|
7.
Zhao C. Practical High Piezoelectricity in Barium Titanate Ceramics Utilizing Multiphase Convergence with Broad Structural Flexibility.
Journal of the American Chemical Society,2018,140(45):15252-15260
|
CSCD被引
13
次
|
|
|
|
8.
Zhu L F. Large piezoelectric responses of Bi(Fe,Mg,Ti)O_3-BaTiO_3lead-free piezoceramics near the morphotropic phase boundary.
Journal of Alloys and Compounds,2017,727:382-389
|
CSCD被引
4
次
|
|
|
|
9.
Liu Q. Practical high-performance lead-free piezoelectrics:structural flexibility beyond utilizing multiphase coexistence.
National Science Review,2020,7(2):355-365
|
CSCD被引
13
次
|
|
|
|
10.
Lv X. High-performance 0-3type niobate-based lead-free piezoelectric composite ceramics with ZnO inclusions.
ACS Applied Materials &Interfaces,2018,10(36):30566-30573
|
CSCD被引
1
次
|
|
|
|
11.
Karan S K. Recent advances in self-powered tribo/piezoelectric energy harvesters:all-in-one package for future smart technologies.
Advanced Functional Materials,2020,30(48):2004446
|
CSCD被引
5
次
|
|
|
|
12.
Zhang D Z. Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators.
Coordination Chemistry Reviews,2021,427:97-112
|
CSCD被引
11
次
|
|
|
|
13.
董慧. 柔性纳米发电机及器件的最新研究进展.
中国材料进展,2021,40(6):470-480
|
CSCD被引
2
次
|
|
|
|
14.
Kobayashi M. High-temperature integrated and flexible ultrasonic transducers for nondestructive testing.
NDT & E International,2009,42(2):157-161
|
CSCD被引
6
次
|
|
|
|
15.
Yu Z. Large piezoelectricity and high Curie temperature in novel bismuth ferrite-based ferroelectric ceramics.
Journal of the American Ceramic Society,2020,103(11):6435-6444
|
CSCD被引
2
次
|
|
|
|
16.
Yan S. Dielectric,piezoelectric and dc bias characteristics of Bi-doped PZT multilayer ceramic actuator.
Materials Chemistry and Physics,2020,255:123605
|
CSCD被引
2
次
|
|
|
|
17.
褚涛. 高机械品质因数压电陶瓷材料的研究进展及应用.
材料导报,2019,33(增刊1):165-170
|
CSCD被引
2
次
|
|
|
|
18.
Zhu R F. Composition design of PMN-PH-PT piezoelectric ceramics for high-temperature actuator applications.
Materials Research Express,2020,7(4):1591-2053
|
CSCD被引
1
次
|
|
|
|
19.
Wang J. Fabrication and properties of the thickness mode ultrasonic transducer based on 0.15Pb (Mg_(1/3)Nb_(2/3))O_3-0.38PbHfO_3-0.47PbTiO_3piezoelectric ceramics.
Ceramics International,2020,46(8):11913-11920
|
CSCD被引
1
次
|
|
|
|
20.
Eitel R E. Preparation and characterization of high temperature perovskite ferroelectrics in the solid-solution(1-x)BiScO_(3-x)PbTiO_3.
Japanese Journal of Applied Physics,2002,41(4):2099-2104
|
CSCD被引
35
次
|
|
|
|
|