增材制造中高强铝合金的缺陷与力学性能研究进展
Research progress in defects and mechanical properties of additively manufactured aluminum alloy
查看参考文献65篇
文摘
|
铝合金是一种重要的轻质金属结构材料,广泛应用于航空航天和交通运输等领域。行业的快速发展对铝合金零件的服役性能和制备过程都提出了更高的要求,传统减材制造已难以满足对铝合金零件高效敏捷、绿色环保的制备要求。增材制造作为一种新兴的快速成形技术,为铝合金零件的制备提供了一个崭新的思路。然而,由于增材制造的工艺特点和铝合金的本征性质,通过增材制造技术制备的中高强铝合金零件中易形成诸多缺陷,严重损害其力学性能,限制其实际生产应用。本文综述了增材制造中高强铝合金零件中的缺陷类型及其成因,并从优化工艺参数、合金成分和添加形核剂三个方面,重点讨论了目前消除增材制造中高强铝合金零件中缺陷,改善其力学性能的进展及发展趋势,并指出未来改善增材制造中高强铝合金微观组织和力学性能的努力方向应为综合调控工艺参数和合金成分,进一步探索增材制造铝合金的最佳热处理工艺,从而获得高强塑性增材制造铝合金。 |
其他语种文摘
|
Aluminum alloy is an important light metal structural material,which has been widely used in aerospace and transportation industries.Wrought aluminum alloys generally require extrusion, rolling or forging after casting to be processed into finished products.However,this conventional casting-deforming-cutting subtractive manufacturing route has become increasingly difficult to meet the manufacturing demands of high efficiency and environmental sustainability.As an emerging manufacturing method,additive manufacturing (AM)provides brand-new possibilities for the manufacturing of aluminum alloys by depositing subsequent layers based on digital drawing files to make three-dimensional objects.However,most aluminum alloys are suffering from the various defect issues due to the manufacturing characteristics of laser-based AM processes and several intrinsic properties of aluminum alloys,which impair their mechanical properties and limit their industrial applications.Various defects and corresponding causes in additively manufactured medium-and highstrength aluminum alloys were reviewed in this paper.In addition,latest researches on eliminating defects and thus improving mechanical properties of AM aluminum alloys were summarized from three aspects:process parameter optimization,alloy composition optimization and nucleant agent addition. This work demonstrates that processing parameter and alloy composition should be regulated synergistically to improve the microstructures and mechanical properties of additively manufactured medium-and high-strength aluminum alloy,and the optimal heat treatment should also be investigated. |
来源
|
材料工程
,2023,51(3):29-38 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000038
|
关键词
|
中高强铝合金
;
增材制造
;
缺陷
;
优化工艺参数
;
优化合金成分
;
添加形核剂
|
地址
|
1.
北京理工大学材料学院, 北京, 100081
2.
北京理工大学, 冲击环境材料技术国家级重点实验室, 北京, 100081
3.
北京理工大学唐山研究院, 河北, 唐山, 063003
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
北京理工大学"青年教师学术启动计划"项目
;
装备预先研究领域基金项目
|
文献收藏号
|
CSCD:7445141
|
参考文献 共
65
共4页
|
1.
Davis J R.
Aluminum and aluminum alloys,1993:352-356
|
CSCD被引
1
次
|
|
|
|
2.
Nakai M. New aspect of development of high strength aluminum alloys for aerospace applications.
Materials Science and Engineering:A,2000,285(1/2):62-68
|
CSCD被引
69
次
|
|
|
|
3.
谢水生.
简明铝合金加工手册,2016:36-40
|
CSCD被引
1
次
|
|
|
|
4.
Mcqueen H J.
Hot deformation and processing of aluminum alloys,2011:25-52
|
CSCD被引
1
次
|
|
|
|
5.
Sachs E. Three dimensional printing:rapid tooling and prototypes directly from a CAD model.
Journal of Engineering for Industry,1992,114(4):481-488
|
CSCD被引
33
次
|
|
|
|
6.
Boeira A P. Alloy composition and metal/mold heat transfer efficiency affecting inverse segregation and porosity of as-cast Al-Cu alloys.
Materials &Design,2009,30(6):2090-2098
|
CSCD被引
18
次
|
|
|
|
7.
Brandl E. Additive manufactured AlSi_(10)Mg samples using selective laser melting (SLM):microstructure,high cycle fatigue,and fracture behavior.
Materials & Design,2012,34:159-169
|
CSCD被引
62
次
|
|
|
|
8.
Debroy T. Additive manufacturing of metallic components-process,structure and properties.
Progress in Materials Science,2018,92:112-224
|
CSCD被引
360
次
|
|
|
|
9.
Aboulkhair N T. 3D printing of aluminium alloys:additive manufacturing of aluminium alloys using selective laser melting.
Progress in Materials Science,2019,106:100578
|
CSCD被引
86
次
|
|
|
|
10.
Gu D. Material-structure-performance integrated laser-metal additive manufacturing.
Science,2021,372(6545):932
|
CSCD被引
4
次
|
|
|
|
11.
Zhou L. Laser powder bed fusion of Al-10wt% Ce alloys:microstructure and tensile property.
Journal of Materials Science,2020,55(29):14611-14625
|
CSCD被引
4
次
|
|
|
|
12.
Kaufmann N. Influence of process parameters on the quality of aluminium alloy EN AW 7075using selective laser melting(SLM).
Physics Procedia,2016,83:918-926
|
CSCD被引
31
次
|
|
|
|
13.
Zhang H. Selective laser melting of high strength Al-Cu-Mg alloys:processing,microstructure and mechanical properties.
Materials Science and Engineering:A,2016,656:47-54
|
CSCD被引
56
次
|
|
|
|
14.
Hooper P A. Melt pool temperature and cooling rates in laser powder bed fusion.
Additive Manufacturing,2018,22:548-559
|
CSCD被引
29
次
|
|
|
|
15.
Olakanmi E O. A review on selective laser sintering/melting(SLS/SLM)of aluminium alloy powders:processing,microstructure,and properties.
Progress in Materials Science,2015,74:401-477
|
CSCD被引
114
次
|
|
|
|
16.
Bermingham M. Revealing the mechanisms of grain nucleation and formation during additive manufacturing.
JOM,2020,2(3):1065-1073
|
CSCD被引
5
次
|
|
|
|
17.
Zhou L. Microstructure,precipitates and hardness of selectively laser melted AlSi_(10)Mg alloy before and after heat treatment.
Materials Characterization,2018,143:5-17
|
CSCD被引
16
次
|
|
|
|
18.
Zavala-Arredondo M. Use of power factor and specific point energy as design parameters in laser powder-bed-fusion(L-PBF)of AlSi_(10)Mg alloy.
Materials & Design,2019,182:108018
|
CSCD被引
5
次
|
|
|
|
19.
Prashanth K. Defining the tensile properties of Al-12Si parts produced by selective laser melting.
Acta Materialia,2017,126:25-35
|
CSCD被引
27
次
|
|
|
|
20.
Li X. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25%tensile ductility.
Acta Materialia,2015,95:74-82
|
CSCD被引
58
次
|
|
|
|
|