C_f/SiC复合材料表面抗氧化涂层研究进展
Research progress in oxidation resistant coatings on C_f/SiC composites
查看参考文献66篇
文摘
|
C_f/SiC复合材料因其低密度,高比强度,优异的抗热震、抗氧化和抗烧蚀性能以及高温强度保持率,被认为是高速飞行器的重要热防护材料之一。然而,由于碳纤维在500℃以上发生显著氧化导致材料逐渐失效,因此需对其进行有效的氧化防护。抗氧化涂层被认为是实现C_f/SiC复合材料长时氧化防护的有效手段。本文基于热防护系统对C_f/SiC复合材料抗氧化性能的苛刻要求,综述了现有C_f/SiC复合材料表面抗氧化涂层的研究进展,着重对抗氧化涂层制备技术及涂层体系进行了梳理。提升C_f/SiC复合材料抗氧化涂层使用温度(≥1800℃)及结合强度是当前需要重点解决的问题,制备更长服役时间、更高服役温度同时兼具抗氧化、抗水蒸气腐蚀乃至较好隔热性能的多功能涂层是未来发展的重要方向。 |
其他语种文摘
|
C_f/SiC composites are considered as one of the most important candidates for aerospace thermal protection systems because of their low density,high specific strength,good thermal shock, oxidation and ablation resistance,and excellent high temperature strength retention.However,C_f/SiC composites are prone to oxidize at a temperature above 500℃due to inevitable fabrication defects. So it is necessary to carry out effective oxidation protection for the composites.Oxidation resistant coating is an efficient technology to realize long-term oxidation protection.Based on harsh requirement of thermal protection systems,the research progress of anti-oxidation coatings for C_f/SiC composites was summarized,mainly focusing on the coating material systems and their preparation technologies. Improving the service temperature(≥1800℃)and bonding strength of the coatings is an important issue to be solved at present.The preparation of multi-functional coating with longer service time and higher service temperature,as well as oxidation resistance,water vapor corrosion resistance and even good heat insulation performance is an important direction for future development. |
来源
|
材料工程
,2023,51(3):17-28 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.001123
|
关键词
|
抗氧化涂层
;
C_f/SiC复合材料
;
超高温陶瓷
;
氧化
;
烧蚀
;
热防护
|
地址
|
1.
中国科学院金属研究所, 沈阳, 110016
2.
北京动力机械研究所, 北京, 100074
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
航空 |
基金
|
国家自然科学基金项目
;
国家重点研发计划
|
文献收藏号
|
CSCD:7445140
|
参考文献 共
66
共4页
|
1.
Tobe R J. Hypersonic vehicle thermal protection system model optimization and validation with vibration tests.
Aerospace Science and Technology,2013,28(1):208-213
|
CSCD被引
7
次
|
|
|
|
2.
Behrens B. Technologies for thermal protection systems applied on re-usable launcher.
Acta Astronautica,2004,55(3/9):529-536
|
CSCD被引
22
次
|
|
|
|
3.
关春龙. 可重复使用热防护系统防热结构及材料的研究现状.
宇航材料工艺,2003(6):7-11
|
CSCD被引
18
次
|
|
|
|
4.
鲁芹. X-37B空天飞行器轻质非烧蚀热防护新技术.
现代防御技术,2012,40(1):16-20
|
CSCD被引
8
次
|
|
|
|
5.
Bianchi D. Coupled analysis of flow and surface ablation in carbon-carbon rocket nozzles.
Journal of Spacecraft & Rockets,2009,46:492-500
|
CSCD被引
13
次
|
|
|
|
6.
Bianchi D. Thermochemical erosion analysis for graphite/carbon-carbon rocket nozzles.
Journal of Propulsion &Power,2011,27:197-205
|
CSCD被引
8
次
|
|
|
|
7.
Thakre P. Chemical erosion of carbon-carbon/graphite nozzles in solid-propellant rocket motors.
Journal of Propulsion &Power,2008,24:822-833
|
CSCD被引
26
次
|
|
|
|
8.
Gajiwala H M. Hybridized resin matrix approach applied for development of carbon/carbon composites-Ⅰ.
Carbon,1998,36:903-912
|
CSCD被引
13
次
|
|
|
|
9.
Jian K. Effects of pyrolysis processes on the microstructures and mechanical properties of Cf/SiC composites using polycarbosilane.
Materials Science and Engineering:A,2005,390:154-158
|
CSCD被引
20
次
|
|
|
|
10.
Christin F. Design,fabrication,and application of thermostructural composites(TSC)like C/C,C/SiC,and SiC/SiC composites.
Advanced Engineering Materials,2002,4:903-912
|
CSCD被引
44
次
|
|
|
|
11.
Chamberlain A. Oxidation of ZrB_2-SiC ceramics under atmospheric and reentry conditions.
Refractories Application Transaction,2005,1:1-8
|
CSCD被引
1
次
|
|
|
|
12.
Yang X. Study development on the oxidation-resistance coating of C/C composites.
Carbon,2006,128:16-21
|
CSCD被引
2
次
|
|
|
|
13.
Zhu Y. Effect of CVD ZrB_2coating thickness on anti-ablation performance of C/SiC composites.
Ceramics International,2018,44:8166-8175
|
CSCD被引
7
次
|
|
|
|
14.
Zhang J. Long-time ablation behavior of the multilayer alternating CVD-(SiC/HfC)_3coating for carbon/carbon composites.
Corrosion Science,2021,189:109586
|
CSCD被引
4
次
|
|
|
|
15.
Ache H. Chemical vapour deposition of hafnium carbide and characterization of the deposited layers by secondary-neutral mass spectrometry.
Thin Solid Films,1994,241(1/2):356-360
|
CSCD被引
3
次
|
|
|
|
16.
Liu Q. Morphologies and growth mechanisms of zirconium carbide films by chemical vapor deposition.
Journal of Coatings Technology and Research,2009,6(2):269-273
|
CSCD被引
8
次
|
|
|
|
17.
Wang Y. Deposition mechanism for chemical vapor deposition of zirconium carbide coatings.
Journal of the American Ceramic Society,2008,91(4):1249-1252
|
CSCD被引
13
次
|
|
|
|
18.
Liu G. Effect of modulation period on the structure and mechanical properties of nanoscale W/ZrB_2 multilayered coatings.
Physics Procedia,2011,18:16-20
|
CSCD被引
2
次
|
|
|
|
19.
Zou B L. Microstructure,oxidation protection and failure mechanism of Yb_2SiO_5/LaMgAl_(11)O_(19) coating deposited on C/SiC composites by atmospheric plasma spraying.
Corrosion Science,2012,62:192-200
|
CSCD被引
5
次
|
|
|
|
20.
Wang R Q. Low-pressure plasma spraying of ZrB_2-SiC coatings on C/C substrate by adding TaSi_2.
Surface &Coatings Technology,2021,420:127332
|
CSCD被引
3
次
|
|
|
|
|