石墨烯增强铝基复合材料制备技术及强化机制研究进展
Research progress on preparation technology and strengthening mechanism of graphene reinforced aluminum matrix composites
查看参考文献54篇
文摘
|
具有二维平面结构和优异综合性能的石墨烯已成为铝基复合材料制备的理想增强体之一。本文主要介绍了液态成形法、粉末成形法和复合加工工艺等三大类石墨烯增强铝基复合材料制备技术。通过对不同类型制备技术的原理分析,结合石墨烯增强铝基复合材料的四种强化机制,总结出石墨烯增强铝基复合材料的发展方向应以复合材料的基础理论研究、制备技术的突破和大规模的工业化应用为主。 |
其他语种文摘
|
Graphene has become one of the ideal reinforcers for aluminum matrix composites due to its unique structural characteristics and excellent properties. This paper mainly introduces the preparation technology of three categories of graphenereinforced aluminum matrix composites, including the liquid forming method, powder forming method and composite processing technology, and so on. Base on analyzing the principle of different types of preparation technology, combined with four strengthening mechanisms of graphene-reinforced aluminum matrix composites, the development trend of graphene reinforced aluminum matrix composites is prospected, including the basic theoretical research, the breakthrough of preparation technology and large-scale industrial application of composites. |
来源
|
航空材料学报
,2023,43(1):51-59 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2022.000030
|
关键词
|
石墨烯
;
铝基复合材料
;
制备方法
;
微观组织
;
强化机制
|
地址
|
1.
陕西理工大学材料科学与工程学院, 陕西, 汉中, 723000
2.
陕西理工大学土木工程与建筑学院, 陕西, 汉中, 723000
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
一般工业技术 |
基金
|
陕西省科技计划一般项目-工业领域
;
陕西省教育厅项目
;
陕西理工大学校级科研基金项目
|
文献收藏号
|
CSCD:7441005
|
参考文献 共
54
共3页
|
1.
Rojas J I. Viscoelastic behavior of a novel aluminum metal matrix composite and comparison with pure aluminum, aluminum alloys, and a composite made of Al-Mg-Si alloy reinforced with SiC particles.
Journal of Alloys and Compounds,2018,744(5):445-452
|
CSCD被引
4
次
|
|
|
|
2.
Tang S S. Microstructure and mechanical behaviors of 6061 Al matrix hybrid composites reinforced with SiC and stainless steel particles.
Materials Science and Engineering:A,2021,804:140732
|
CSCD被引
6
次
|
|
|
|
3.
Vencl A. Structural, mechanical and tribological properties of A356 aluminum alloy reinforced with Al_2O_3, SiC and SiC + graphite particles.
Journal of Alloys and Compounds,2010,506(2):631-639
|
CSCD被引
5
次
|
|
|
|
4.
Madhan Kumar S. Fabrication and characterization of aluminum metal matrix composite reinforced with graphite.
Materials Today:Proceedings,2021,45:6708-6711
|
CSCD被引
1
次
|
|
|
|
5.
Zeng C Y. In-situ TiC particles reinforced AA2219 Al-6.3Cu alloy joint via ultrasonic frequency double-pulsed arc.
Materials Science and Engineering:A,2022,842:143078
|
CSCD被引
1
次
|
|
|
|
6.
Liu W C. Effects of repeated accumulative roll bonding cycles on microstructural characteristics and tensile behaviors of Al_2O_3 particle reinforced aluminum-matrix composites.
Materials Letters,2022,320:132386
|
CSCD被引
1
次
|
|
|
|
7.
Ganiger S S. Microstructural evolution and mechanical behavior of 90-micron sized B4C particulates reinforced Al2219 alloy composites.
Materials Today:Proceedings,2021,45:7138-7142
|
CSCD被引
1
次
|
|
|
|
8.
Gao M Q. Microstructure and enhanced mechanical properties of hybrid-sized B4C particle-reinforced 6061Al matrix composites.
Materials Science and Engineering:A,2021,802:140453
|
CSCD被引
1
次
|
|
|
|
9.
Zhong K D. The effect of nickel coating on the mechanical properties and failure modes of continuous carbon fiber reinforced aluminum matrix composites.
Journal of Alloys and Compounds,2022,904:164134
|
CSCD被引
3
次
|
|
|
|
10.
Naganuma T. The effect of a compliant polyimide nano-coating on the tensile properties of a high strength PAN-based carbon fiber.
Composites Science and Technology,2009,69(7/8):1319-1322
|
CSCD被引
6
次
|
|
|
|
11.
Lee W S. The effects of temperature and strain rate on the properties of carbon-fiber-reinforced 7075 aluminum alloy metal-matrix composite.
Composites Science and Technology,2000,60(10):1975-1983
|
CSCD被引
7
次
|
|
|
|
12.
Chen B. Mechanical properties and strain hardening behavior of aluminum matrix composites reinforced with few-walled carbon nanotubes.
Journal of Alloys and Compounds,2020,826:154075
|
CSCD被引
3
次
|
|
|
|
13.
Hanizam H. Optimization of mechanical stir casting parameters for fabrication of carbon nanotubes-aluminum alloy composite through Taguchi method.
Journal of Materials Research and Technology,2019,8(2):2223-2231
|
CSCD被引
1
次
|
|
|
|
14.
Zhang S. Effects of energy input during friction stir processing on microstructures and mechanical properties of aluminum/carbon nanotubes nanocomposites.
Journal of Alloys and Compounds,2019,798:523-530
|
CSCD被引
2
次
|
|
|
|
15.
Zheng Z. Graphene nano-platelets reinforced aluminum composites with anisotropic compressive properties.
Materials Science and Engineering:A,2020,798:140234
|
CSCD被引
5
次
|
|
|
|
16.
Pyun K R. Graphene as a material for energy generation and control: Recent progress in the control of graphene thermal conductivity by graphene defect engineering.
Materials Today Energy,2019,12(6):431-442
|
CSCD被引
6
次
|
|
|
|
17.
Venkatesan S. Tensile behavior of aluminum alloy (AA7050) metal matrix composite reinforced with graphene fabricated by stir and squeeze cast processes.
Science and Technology of Materials,2018,30(2):74-85
|
CSCD被引
3
次
|
|
|
|
18.
Shin S E. Strengthening behavior of few-layered graphene/aluminum composites.
Carbon,2015,82(2):143-151
|
CSCD被引
46
次
|
|
|
|
19.
张丹丹. 石墨烯/金属复合材料力学性能的研究进展.
材料工程,2016,44(5):112-119
|
CSCD被引
7
次
|
|
|
|
20.
Harichandran R. Experimental and numerical evaluation of thermal conductivity of graphene nanoplatelets reinforced aluminum composites produced by powder metallurgy and hot extrusion technique.
Journal of Alloys and Compounds,2022,900:163401
|
CSCD被引
3
次
|
|
|
|
|