航空装备激光增材制造技术发展及路线图
Development and roadmap of laser additive manufacturing technology for aviation equipment
查看参考文献21篇
王天元
1,2,3
黄帅
1,2,3
周标
1,2,3
郑涛
1,2,3
张国栋
1,2,3
郭绍庆
1,2,3
*
文摘
|
激光增材制造支持结构设计创新、快速研制和验证,是当前航空装备领域最具代表性的增材制造方法,其中激光选区熔化主要应用于复杂精密功能结构的精确近净成形制造,激光直接沉积主要用于大尺寸复杂承载结构的制造。为支撑航空领域增材制造技术发展的战略布局,本文对激光增材制造现状和发展趋势进行梳理,指出增材制造发展重点必然会转向产品的冶金质量、力学性能及其稳定性控制方面,增材制造设备的在线监测、参数自整定控制等智能化功能的研究开发正成为设备的研发热点,基于损伤失效分析、寿命预测研究的增材制件力学行为研究以及基于元件、特征结构的性能考核验证技术,开始引起工程应用部门的关注。在对技术发展趋势分析的基础上,提出2035年航空领域激光增材制造技术发展目标和相应的政策和环境支撑、保障需求,并给出2035年技术发展路线图建议。 |
其他语种文摘
|
As the most representative additive manufacturing method in the field of aviation equipment at present, the laser additive manufacturing supports the structure design innovation, rapid development and verification. Among them, selective laser melting is mainly used for precision near net shape manufacturing of complex precise functional structures, and laser direct metal deposition is mainly used for manufacturing large and complex load-bearing structures. In order to support the strategic layout of the development of additive manufacturing technology in the aviation field, this paper sorts the current situation and development trend of laser additive manufacturing, and points out that the focus of additive manufacturing development is bound to turn to the metallurgical quality, mechanical properties and their stability control of products. The research and development of intelligent functions such as online monitoring, parameter self-tuning control of additive manufacturing equipment are becoming a research hotspot. Either the research on mechanical behavior of additive parts based on damage failure analysis and life prediction or the performance evaluation and verification technology based on components and characteristic structures have begun to attract the attention of engineering application departments. Based on the analysis of the technology development trend, the development goal of laser additive manufacturing technology in the aviation field in 2035 and the corresponding policy and environmental support and guarantee needs are proposed, and the technical development roadmap in 2035 is put forward. In 2025-2035, the control technology of microstructure,property and deformation for additive manufacturing of ordinary metal, intermetallic compound, Nb-Si and ceramic based material is to be made a comprehensive breakthrough, the performance verification is to be basically completed, the functional assessment has been partially completed, and some products are to be entered mass production. Important load-bearing structures of aircraft and rotating parts of aeroengine made by additive manufacturing are to be widely used. |
来源
|
航空材料学报
,2023,43(1):1-17 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2022.000210
|
关键词
|
激光增材制造
;
金属材料
;
飞机
;
航空发动机
;
发展路线图
|
地址
|
1.
中国航发北京航空材料研究院, 北京, 100095
2.
中国航发集团增材制造技术创新中心, 北京, 100095
3.
北京市航空发动机先进焊接工程技术研究中心, 北京市航空发动机先进焊接工程技术研究中心, 北京, 100095
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:7441001
|
参考文献 共
21
共2页
|
1.
田宗军. 激光增材制造技术在航空航天领域的应用与发展.
航空制造技术,2015,58(11):41-45
|
CSCD被引
3
次
|
|
|
|
2.
林鑫. 应用于航空领域的金属高性能增材制造技术.
中国材料进展,2015,34(9):684-688
|
CSCD被引
74
次
|
|
|
|
3.
闫雪. 增材制造技术在航空发动机中的应用及发展.
航空制造技术,2016,59(21):70-75
|
CSCD被引
11
次
|
|
|
|
4.
熊华平.
航空金属材料增材制造技术,2019
|
CSCD被引
4
次
|
|
|
|
5.
Nikolay K T. Balling processes during selective laser treatment of powders.
Rapid Prototyping Journal,2004(10):78-87
|
CSCD被引
32
次
|
|
|
|
6.
Meier H. Experimental studies on selective laser melting of metallic parts.
Materialwissenschaft und Werkstofftechnik,2008,39(9):665-670
|
CSCD被引
20
次
|
|
|
|
7.
Childs T H C. Mapping and modeling single scan track formation in direct metal selective laser melting.
Cirp Annals-Manufacturing Technology,2004,53(1):191-194
|
CSCD被引
3
次
|
|
|
|
8.
陈玮. 航空钛合金增材制造的机遇和挑战.
航空制造技术,2018,61(10):30-37
|
CSCD被引
11
次
|
|
|
|
9.
Griffith M L. Understanding thermal behavior in the LENS process.
Materials & Design,1999,20(2):107-113
|
CSCD被引
41
次
|
|
|
|
10.
Gunatnna M. Epitaxial laser metal forming: analysis of microstructure formation.
Materials Science & Engineering:A,1999,271(1/2):232-241
|
CSCD被引
1
次
|
|
|
|
11.
Gaumann M. Single-crystal laser deposition of superalloys: processingmicrostructure maps.
Acta Materialia,2001,49(6):1051-1062
|
CSCD被引
121
次
|
|
|
|
12.
Liu C M. Obtaining bimodal microstructure in laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy.
Materials Science & Engineering:A,2014,609:177-184
|
CSCD被引
6
次
|
|
|
|
13.
杨强. 激光增材制造技术的研究现状及发展趋势.
航空制造技术,2016,59(12):26-31
|
CSCD被引
70
次
|
|
|
|
14.
Li N. Progress in additive manufacturing on new materials: A review.
Journal of Materials Science & Technology,2019,35:242-269
|
CSCD被引
78
次
|
|
|
|
15.
王华明. 高性能金属构件增材制造技术开启国防制造新篇章.
国防制造技术,2013(3):5-7
|
CSCD被引
23
次
|
|
|
|
16.
Gu D D. Material-structure-performance integrated laser-metal additive manufacturing.
Science,2021,372:eabg1487
|
CSCD被引
49
次
|
|
|
|
17.
姚喆赫. 激光再制造技术与应用发展研究.
中国工程科学,2020,22(3):63-70
|
CSCD被引
13
次
|
|
|
|
18.
吴斌. 基于增材制造的新型战机结构创新.
航空材料学报,2021,41(6):1-12
|
CSCD被引
6
次
|
|
|
|
19.
杨胶溪. 激光选区熔化技术在航空航天领域的发展现状及典型应用.
航空材料学报,2021,41(2):1-15
|
CSCD被引
18
次
|
|
|
|
20.
王迪. 激光选区熔化成形高温镍基合金研究进展.
航空制造技术,2018,61(10):49-60,67
|
CSCD被引
20
次
|
|
|
|
|