生物医用亚稳β钛合金的研究进展
Research progress in metastableβ-type titanium alloys for biomedical applications
查看参考文献121篇
文摘
|
钛及钛合金具有高比强度、低的弹性模量、无磁性以及优异的生物相容性和耐腐蚀性能等特点,被认为是理想的生物医用金属材料。以无毒性的Nb,Mo,Ta,Zr和Sn等作为主要合金化元素,并具有更低弹性模量的亚稳β型钛合金是新一代医用钛合金材料的重点发展方向。本文综述了生物医用钛合金的基本特性和发展概况,并以Ti-Nb基医用钛合金为例,介绍了新型亚稳β生物医用钛合金的成分设计方法、合金化原理、研究现状和制备技术。最后指出进一步降低弹性模量,提高强度、疲劳性能和功能特性等综合性能是生物医用β钛合金重点的发展方向,今后可以针对合金化元素的交互作用机理、合金成分设计与组织性能调控方法以及微观力学机制等问题开展深入研究。 |
其他语种文摘
|
Titanium and its alloys are promising biomedical metallic materials due to their high specific strength,low Young's modulus,nonmagnetic,excellent biocompatibility and corrosion resistance.A new generation of metastableβ-type Ti alloys with non-toxic Nb,Mo,Ta,Zr and Sn alloying elements and low Young's modulus has become the key research direction of Ti alloys for biomedical applications.The basic characteristics and development history of biomedical titanium alloys were reviewed.Taking Ti-Nb based biomedical titanium alloys as an example,the composition design method,alloying principle,research status and preparation technology of new metastableβ-type biomedical titanium alloys were introduced.Finally,it was pointed out that the further reduction of elastic modulus and improving the comprehensive properties including strength,fatigue performance, and functional properties are the key development directions ofβ-type Ti alloys for biomedical applications.In the future,in-depth research should be placed on the interaction mechanism of alloying elements,chemical composition design approach,microstructure and mechanical properties regulation methods,as well as micromechanical mechanisms. |
来源
|
材料工程
,2023,51(2):52-66 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000545
|
关键词
|
医用钛合金
;
发展现状
;
成分设计
;
组织调控
;
制备技术
|
地址
|
1.
北京航空航天大学材料科学与工程学院, 北京, 100191
2.
大博医疗科技股份有限公司, 福建, 厦门, 361026
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7430227
|
参考文献 共
121
共7页
|
1.
Banerjee D. Perspectives on titanium science and technology.
Acta Materialia,2013,61(3):844-879
|
CSCD被引
319
次
|
|
|
|
2.
Alabort E. Alloys-by-design:a low-modulus titanium alloy for additively manufactured biomedical implants.
Acta Materialia,2022,229:117749
|
CSCD被引
5
次
|
|
|
|
3.
Chen Q. Metallic implant biomaterials.
Materials Science and Engineering:R,2015,87:1-57
|
CSCD被引
123
次
|
|
|
|
4.
Niinomi M. Development of new metallic alloys for biomedical applications.
Acta Biomaterialia,2012,8(11):3888-3903
|
CSCD被引
94
次
|
|
|
|
5.
于振涛. 外科植入物用新型医用钛合金材料设计、开发与应用现状及进展.
中国材料进展,2010,29(12):35-51
|
CSCD被引
24
次
|
|
|
|
6.
Geetha M. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review.
Progress in Materials Science,2009,54(3):397-425
|
CSCD被引
317
次
|
|
|
|
7.
Guo S. Design and fabrication of a metastable beta-type titanium alloy with ultralow elastic modulus and high strength.
Scientific Reports,2015,5:14688
|
CSCD被引
15
次
|
|
|
|
8.
Lopez Pavon L. Effect of Nb content and heat treatment temperature on superelastic properties of Ti-24Zr-(8-12)Nb-2Sn alloys.
Scripta Materialia,2015,95:46-49
|
CSCD被引
2
次
|
|
|
|
9.
Kolli R. A review of metastable beta titanium alloys.
Metals,2018,8(7):506
|
CSCD被引
27
次
|
|
|
|
10.
Abdel-Hady M. Phase stability change with Zr content inβ-type Ti-Nb alloys.
Scripta Materialia,2007,57(11):1000-1003
|
CSCD被引
25
次
|
|
|
|
11.
Dai J H. Influence of alloying elements Nb,Zr,Sn,and oxygen on structural stability and elastic properties of the Ti2448 alloy.
Physical Review B,2014,89(1):014103
|
CSCD被引
4
次
|
|
|
|
12.
Mehjabeen A. Redefining theβ-phase stability in Ti-Nb-Zr alloys for alloy design and microstructural prediction.
JOM,2018,70:2254-2259
|
CSCD被引
6
次
|
|
|
|
13.
Wang Q. Structural stabilities ofβ-Ti alloys studied using a new Mo equivalent derived from [β/(α+ β)]phase-boundary slopes.
Metallurgical and Materials Transactions A,2015,46(8):3440-3447
|
CSCD被引
17
次
|
|
|
|
14.
Obbard E G. The effect of oxygen onα″martensite and superelasticity in Ti-24Nb-4Zr-8Sn.
Acta Materialia,2011,59(1):112-125
|
CSCD被引
7
次
|
|
|
|
15.
Morinaga M. Theoretical design of titanium alloys.
Sixth World Conference on Titanium III,1988:1601
|
CSCD被引
3
次
|
|
|
|
16.
Abdel-Hady M. General approach to phase stability and elastic properties ofβ-type Ti-alloys using electronic parameters.
Scripta Materialia,2006,55(5):477-480
|
CSCD被引
76
次
|
|
|
|
17.
Morinaga M. Alloy design with the aid of molecular orbital method.
Bulletin of Materials Science,1997,20(6):805-815
|
CSCD被引
3
次
|
|
|
|
18.
You L. A study of low Young's modulus Ti-Nb-Zr alloys using d electrons alloy theory.
Scripta Materialia,2012,67(1):57-60
|
CSCD被引
10
次
|
|
|
|
19.
Castany P. Design of straintransformable titanium alloys.
Comptes Rendus Physique,2018,19:710-720
|
CSCD被引
3
次
|
|
|
|
20.
Ramezannejad A. New insights into nickel-free superelastic titanium alloys for biomedical applications.
Current Opinion in Solid State and Materials Science,2019,23(6):100783
|
CSCD被引
4
次
|
|
|
|
|