基于气液分离的天然气双入口优化设计
Design optimization of natural gas double inlets based on gas-liquid separation
查看参考文献20篇
文摘
|
天然气井采出的天然气通常含一定量的液体,这些液体不仅会堵塞管线、阀门,影响流量计计量的精确度,而且还会腐蚀设备、管道、仪表,易引起振动,破坏管道结构,严重影响集输生产管道寿命与安全,因此需尽快对采出液进行气液分离。为此,根据油气田现场采出液工况,设计了双入口气液分离器,并采用欧拉多相流模型,耦合标准k-ε湍流模型,对分离器内部的流场分布和分离特性开展了数值模拟研究。研究结果表明:①由于双入口的存在,分离器入口处湍流强度较小,流动较为平稳,能够增加入口气液混合液的分层程度,减少分离器下部发生折返的气体流量,进而减少气体出口带液量;②当入口液滴粒径大于0.1 mm时,仅有极少量的气体从液体出口流走,能够取得较好的分离效果;③随着分流比的减小,液体出口液体体积分数迅速增加,气体出口液体体积分数缓慢增加;④入口液体体积分数的变化主要影响分离后气体的纯度,对分离后液体的纯度影响较小。结论认为,在实际应用过程中,对于液滴粒径较小的来液工况,无论入口液体体积分数如何变化,均应调节分流比小于入口液体体积分数,使其液位略高于液体出口,以提高气液分离的效果。 |
其他语种文摘
|
Natural gas produced by a gas well usually contains a certain amount of liquid,which will not only block the pipelines and valves and affect the accuracy of the flowmeter,but also corrode the equipment,pipelines and instruments.Besides,it is easy to cause vibration to damage the pipeline structure,which ultimately impacts the life and safety of gathering and production pipelines.Therefore,it is necessary to perform gas-liquid separation on produced fluids as soon as possible.Based on the working conditions of produced fluids in actual oil and gas fields,this paper designs a double-inlet gas-liquid separator.In addition,the flow field distribution and separation characteristics in the separator are numerically simulated by using the Euler multiphase flow model,coupled with the standard k-ε turbulence model.And the following research results are obtained.First,due to the existence of double inlets,the turbulence intensity at the inlet of the separator is smaller and the flow is relatively stable,which can increase the stratification degree of the gas-liquid mixture at the inlet and reduce the returning gas flow in the lower part of the separator,so as to reduce the liquid carrying capacity at the gas outlet.Second,when the droplet size at the inlet is larger than 0.1 mm,only a tiny amount of gas flows away through the liquid outlet,so as to achieve good separation effect.Third,with the decrease of the split ratio,the liquid volume fraction at the liquid outlet increases rapidly,while that at the gas outlet increases slowly.Fourth,the change of the liquid volume fraction at the inlet mainly affects the gas purity after separation,and has little effect on the liquid purity after separation.It is concluded that in the process of actual application,for the incoming working condition with small droplet size,no matter how the liquid volume fraction at the inlet changes,it is necessary to adjust the split ratio to be less than the liquid volume fra ction at the inlet,so that the liquid level is slightly higher than the liquid outlet and consequently improves the gas-liquid separation ef fect. |
来源
|
天然气工业
,2023,43(2):114-120 【核心库】
|
DOI
|
10.3787/j.issn.1000-0976.2023.02.011
|
关键词
|
气液分离
;
双入口
;
液滴粒径
;
分流比
;
液体体积分数
;
多相流模型
;
湍流强度
|
地址
|
1.
中国科学院力学研究所, 102206
2.
中国科学院大学工程科学学院, 102206
3.
中石化石油工程技术研究院有限公司, 100101
4.
华南理工大学土木与交通学院, 510641
5.
中国石化胜利石油工程有限公司塔里木公司, 841000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0976 |
学科
|
石油、天然气工业 |
基金
|
广东省基础与应用基础研究基金项目
|
文献收藏号
|
CSCD:7429280
|
参考文献 共
20
共1页
|
1.
Davies E. Miniaturized separators for offshore platforms.
Proceedings of the 1st New Technology for Exploration & Exploitation of Oil and Gas Reserves Symposium,1979:75-85
|
CSCD被引
1
次
|
|
|
|
2.
Kouba G E. A review of gas-liquid cylindrical cyclone (GLCC) technology.
Production Separation Systems International Conference,1996
|
CSCD被引
1
次
|
|
|
|
3.
Hreiz R. On the effect of the nozzle design on the performances of gas-liquid cylindrical cyclone separators.
International Journal of Multiphase Flow,2014,58:15-26
|
CSCD被引
14
次
|
|
|
|
4.
Yang Lele. Experimental and numerical study of separation characteristics in gas-liquid cylindrical cyclone.
Chemical Engineering Science,2020,214:115362
|
CSCD被引
3
次
|
|
|
|
5.
Yang Lele. Breakup, coalescence, and migration regularity of bubbles under gas-liquid swirling flow in gas-liquid cylindrical cyclone.
Industrial & Engineering Chemistry Research,2020,59(5):2068-2082
|
CSCD被引
1
次
|
|
|
|
6.
Kouba G E. Design and performance of gas liquid cylindrical cyclone separators.
Proceedings of the BHR Group 7th International Conference on "Multiphase 95",1995:307-327
|
CSCD被引
1
次
|
|
|
|
7.
Chirinos W A. Liquid carryover in gas-liquid cylindrical cyclone compact separators.
SPE annual technical conference and exhibition. SPE-56582-MS,1999
|
CSCD被引
1
次
|
|
|
|
8.
Arpandi I A. Hydrodynamics of two-phase flow in gas-liquid cylindrical cyclone separators.
SPE Journal,1996,1(4):427-436
|
CSCD被引
2
次
|
|
|
|
9.
Movafaghian S. The effects of geometry, fluid properties and pressure on the hydrodynamics of gas-liquid cylindrical cyclone separators.
International Journal of Multiphase Flow,2000,26(6):999-1018
|
CSCD被引
24
次
|
|
|
|
10.
Wang S.
Control system analysis of Gas-liquid cylindrical cyclone separators,1997
|
CSCD被引
2
次
|
|
|
|
11.
Yue Ti. Experimental and numerical study of upper swirling liquid film (USLF) among gasliquid cylindrical cyclones (GLCC).
Chemical Engineering Journal,2019,358:806-820
|
CSCD被引
12
次
|
|
|
|
12.
Wang Yaan. Measurement of thickness and analysis on flow characteristics of upper swirling liquid film in gas-liquid cylindrical cyclone.
Experimental Thermal and Fluid Science,2021,123:110331
|
CSCD被引
2
次
|
|
|
|
13.
Cornejo Caceres J S. Numerical simulation of a natural gas cylindrical cyclone separator using computational fluid dynamics.
Industrial & Engineering Chemistry Research,2019,58(31):14323-14332
|
CSCD被引
1
次
|
|
|
|
14.
蒋明虎. 柱状气液分离器入口结构数值模拟及试验研究.
石油机械,2013,41(2):79-83
|
CSCD被引
5
次
|
|
|
|
15.
王亚安. 管柱式气液旋流分离器液膜厚度的空间分布特性.
化工学报,2020,71(11):5216-5225
|
CSCD被引
3
次
|
|
|
|
16.
王亚安. 基于相似分析和人工神经网络的管柱式气液旋流分离器压降预测模型.
中国海洋平台,2019,34(4):78-86
|
CSCD被引
2
次
|
|
|
|
17.
Wang S. Dynamic simulation and control-system design for gas/liquid cylindrical cyclone separators.
SPE Journal,2001,6(2):236-247
|
CSCD被引
1
次
|
|
|
|
18.
Yang Lele. Effects of pressure control on droplet size distribution and flow regimes in gas-liquid cylindrical cyclone.
Journal of Natural Gas Science and Engineering,2022,100:104465
|
CSCD被引
2
次
|
|
|
|
19.
Launder B E. The numerical computation of turbulent flows.
Numerical prediction of flow, heat transfer, turbulence and combustion,1983:96-116
|
CSCD被引
16
次
|
|
|
|
20.
Molina R. Wet gas separation in gas-liquid cylindrical cyclone separator.
Journal of Energy Resources Technology,2008,130(4):042701
|
CSCD被引
3
次
|
|
|
|
|