贵州纳雍枝铅锌矿床成因研究:来自镉同位素和微量元素的约束
Genesis of the Nayongzhi lead-zinc deposit in Guizhou Province:constraints from Cd isotopes and trace elements
查看参考文献48篇
文摘
|
纳雍枝铅锌矿床是贵州省内发现的第一个大型铅锌矿床,前人对该矿床进行过大量地质和地球化学研究,对该矿床成因有了一定认识,但其成矿金属来源,特别是其中稀散金属(如Cd)的来源却少有涉及。本文分析了该矿床硫化物和精矿样品的微量元素及镉同位素组成,结合该区域不同地质端元的地球化学数据,来探讨以Cd为代表的稀散金属来源。结果表明,样品的Zn/Cd值变化较大(377~953),均高于川滇黔地区沉积岩的Zn/Cd比值(13 ~ 367),而更接近火成岩的Zn/Cd值(515~1319)。精矿和闪锌矿样品的镉同位素组成(δ~(114/110) Cd_(NIST-3108))变化范围极小(-0.09‰ ~-0.05‰),与已获得的岩浆岩数据一致(-0.22‰ ~ 0.15‰),但明显区别于该地区的碳酸盐岩地层(-0.25‰ ~ 0.82‰)。结合精矿的Zn/Cd-δ~(114/110) Cd_(NIST-3108)关系图解和前人研究成果,本文认为该矿床金属成矿物质(如镉、铅等)主要来自基底。 |
其他语种文摘
|
The Nayongzhi lead-zinc deposit is the first large-scale lead-zinc deposit discovered in Guizhou Province.With comprehensive geological and geochemical studies on the deposit,its ore genesis has been primarily constrained.However,the sources of its metal materials,especially dispersed metals (such as Cd),are still poorly understood.In this paper,combined with geochemical data of different geological endmembers in the region,Cd isotope and trace elements in sulfide minerals and concentrates of the Nayongzhi lead-zinc deposit have been analyzed to explore the source of Cd as a representative of dispersed elements of the deposit.The results show that Zn/Cd ratios of the studied samples,varying greatly from 377 to 953,are higher than those of sedimentary rocks (13~367) from the Sichuan-Yunnan-Guizhou area,but are similar to those of igneous rocks (515 ~ 1319).The Cd isotopic compositions (δ~(114/110) Cd_(NIST-3108)) of concentrates and sphalerite samples of the Nayongzhi deposit vary in a very small range (-0.09‰ ~-0.05‰),which is similar to that of igneous rocks (-0.22‰ ~0.15‰),but quite different from that of carbonate rocks (-0.25‰ ~ 0.82‰) in the area.Combined with the Zn/Cd-δ~(114/110) Cd_(NIST-3108) diagram of the concentrates and data of previous studies,we have concluded that metals (such as Cd,Pb,etc.) of the deposit were dominantly derived from the basements. |
来源
|
矿物岩石地球化学通报
,2023,42(1):206-214 【核心库】
|
DOI
|
10.19658/j.issn.1007-2802.2022.41.072
|
关键词
|
Zn/Cd
;
镉同位素
;
硫化物
;
纳雍枝矿床
|
地址
|
1.
中国地质大学(武汉)资源学院, 武汉, 430074
2.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550081
3.
中国科学院大学资源与环境学院, 北京, 100049
4.
昆明理工大学国土资源工程学院, 昆明, 650093
5.
贵州省地质矿产勘查开发局,贵州省地质调查院, 贵阳, 550081
6.
长安大学地球科学与资源学院, 西安, 710054
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
贵州省项目
|
文献收藏号
|
CSCD:7427103
|
参考文献 共
48
共3页
|
1.
Abouchami W. A common reference material for cadmium isotope studies-NIST SRM 3108.
Geostandards and Geoanalytical Research,2013,37(1):5-17
|
CSCD被引
10
次
|
|
|
|
2.
Bischoff J L. Sea-floor massive sulfide deposits from 21°N, East Pacific Rise; Juan de Fuca Ridge; and Galapagos Rift: Bulk chemical composition and economic implications.
Economic Geology,1983,78(8):1711-1720
|
CSCD被引
4
次
|
|
|
|
3.
Braukmuller N. Determination of Cu, Zn, Ga, Ag, Cd, In, Sn and Tl in geological reference materials and chondrites by isotope dilution ICP-MS.
Geostandards and Geoanalytical Research,2020,44(4):733-752
|
CSCD被引
2
次
|
|
|
|
4.
Chen S. Zinc isotopic compositions of NIST SRM 683 and whole-rock reference materials.
Geostandards and Geoanalytical Research,2016,40(3):417-432
|
CSCD被引
8
次
|
|
|
|
5.
Gladney E S. 1987 compilation of elemental concentration data for USGS BIR-1, DNC-1 and W-2.
Geostandards Newsletter,1988,12(1):63-118
|
CSCD被引
1
次
|
|
|
|
6.
Gottesmann W. Zn/Cd ratios in calcsilicate-hosted sphalerite ores at Tumurtijn-ovoo, Mongolia.
Geochemistry,2007,67(4):323-328
|
CSCD被引
25
次
|
|
|
|
7.
Hohl S V. Cadmium isotope variations in Neoproterozoic carbonates-A tracer of biologic production?.
Geochemical Perspectives Letters,2017,3(1):32-44
|
CSCD被引
3
次
|
|
|
|
8.
Hu Z C. Upper crustal abundances of trace elements: A revision and update.
Chemical Geology,2008,253(3/4):205-221
|
CSCD被引
20
次
|
|
|
|
9.
Kay R W. Trace elements in ocean ridge basalts.
Earth and Planetary Science Letters,1978,38(1):95-116
|
CSCD被引
6
次
|
|
|
|
10.
Liu M S. High-precision Cd isotope measurements of soil and rock reference materials by MC-ICP-MS with double spike correction.
Geostandards and Geoanalytical Research,2020,44(1):169-182
|
CSCD被引
7
次
|
|
|
|
11.
Metz S. Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids.
Geochimica et Cosmochimica Acta,2000,64(13):2267-2279
|
CSCD被引
23
次
|
|
|
|
12.
Okai T. Collaborative analysis of GSJ geochemical reference materials JCu-1 (Copper ore) and JZn-1 (Zinc ore).
Bunseki Kagaku,2002,51(10):973-977
|
CSCD被引
1
次
|
|
|
|
13.
Palk E. Variable Tl, Pb, and Cd concentrations and isotope compositions of enstatite and ordinary chondrites-Evidence for volatile element mobilization and decay of extinct 205 Pb.
Meteoritics & Planetary Science,2018,53(2):167-186
|
CSCD被引
1
次
|
|
|
|
14.
Schmitt A D. High-precision cadmium stable isotope measurements by double spike thermal ionisation mass spectrometry.
Journal of Analytical Atomic Spectrometry,2009,24(8):1079-1088
|
CSCD被引
12
次
|
|
|
|
15.
Tan D C. Highsensitivity determination of Cd isotopes in low-Cd geological samples by double spike MC-ICP-MS.
Journal of Analytical Atomic Spectrometry,2020,35(4):713-727
|
CSCD被引
6
次
|
|
|
|
16.
Terashima S. The preparation and characterisation of two new geological survey of Japan geochemical reference materials: Copper ore JCu-1 and Zinc ore JZn-1.
Geostandards Newsletter,2003,27(3):259-271
|
CSCD被引
1
次
|
|
|
|
17.
Turekian I K. Distribution of the elements in some major units of the earth's crust.
GSA Bulletin,1961,72(2):175-192
|
CSCD被引
1
次
|
|
|
|
18.
Wei C. Trace element contents in Sphalerite from the Nayongzhi Zn-Pb Deposit, northwestern Guizhou, China: Insights into incorporation mechanisms, metallogenic temperature and ore genesis.
Minerals,2018,8(11):490
|
CSCD被引
15
次
|
|
|
|
19.
Wen H J. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits.
Scientific Reports,2016,6:25273
|
CSCD被引
12
次
|
|
|
|
20.
Wiggenhauser M. Cadmium isotope fractionation in soil-wheat systems.
Environmental Science & Technology,2016,50(17):9223-9231
|
CSCD被引
10
次
|
|
|
|
|