帮助 关于我们

返回检索结果

CYGNSS土壤盐分反演方法研究:以黄河三角洲为例
A remote sensing method for retrieving soil salinity based on CYGNSS: Taking the Yellow River Delta as an example

查看参考文献44篇

王俊栋 1,2   孙志刚 1,3,2,4   杨婷 3,4 *   朱康莹 1,2   邵长秀 1,3,4   彭金榜 1,2   李仕冀 1,2   王玮莹 1,2   高祎男 5   岳焕印 6  
文摘 土壤盐碱胁迫是植物生产力低下的关键因素,也是全球盐碱区可持续发展的瓶颈;如何较为高效可靠地获取区域土壤盐分信息是需要优先解决的问题。随着全球导航卫星系统反射测量GNSS-R (Global Navigation Satellite System Reflectometry)的迅速发展,运用星载GNSS-R测量区域范围的土壤盐分成为一种可能。全球飓风导航卫星系统CYGNSS(The Cyclone Global Navigation Satellite System)作为星载GNSS-R计划的重要组成部分之一,其卫星传感器使用的L波段能够敏感地获取土壤介电常数信息,为反演土壤盐分提供了理论基础。本文以CYGNSS作为主要数据源,选取土壤盐渍化十分严重且具有典型代表性的黄河三角洲区域作为研究区域,首次探讨CYGNSS反演土壤盐分的可行性,并建立了一套土壤盐分的反演方法。首先,利用基于相干信号的双基雷达方程对CYGNSS数据进行计算获取地表反射率,并校正地表反射率的地表粗糙度和植被衰减效应,计算得到土壤介电常数的幅值;然后,以改进的Dobson-S土壤介电常数模型为物理模型结合土壤水分主动—被动探测卫星SMAP(Soil Moisture Active Passive Mission)土壤水分产品数据为主要的辅助数据,构建一套土壤盐分反演方法,完成2020年5月份黄河三角洲高效经济生态区的土壤盐分反演;最后,利用实测电导率数值对反演结果进行真实性检验,决定系数(R~2)为0.88、均方根误差(RMSE)为1.06 mS/cm,拟合精度较高。本研究成果表明运用CYGNSS反演土壤盐分具有一定的可行性,并为区域尺度上的土壤盐分提供一种新思路。
其他语种文摘 Soil saline-alkali stress is the key factor of low plant productivity and the bottleneck of sustainable development in global salinealkali areas. Obtaining regional soil salinity information both efficiently and reliably is a necessary problem to be solved. The rapid development of global navigation satellite system reflectometry (GNSS-R) provides a new opportunity to use spaceborne GNSS-R to retrieve soil salinity. The Cyclone Global Navigation Satellite System (CYGNSS) is one of the important components of the spaceborne GNSS-R mission, and the L-band used by CYGNSS is very sensitive to the soil dielectric constant, which provides a theoretical basis for estimating soil salinity. In this paper, CYGNSS was taken as the main data source, and the Yellow River Delta region, a typical area with extreme salinization of soil, was selected as the research religion to discuss the feasibility of soil salinity estimation by CYGNSS for the first time. A set of soil salinity retrieval methods was established. We proposed a physical model that took CYGNSS as the main data with some other auxiliary data fused. First, the surface reflectance was obtained by calculating the CYGNSS data of coherent signals based on the bistatic radar equation, and then the surface roughness and vegetation attenuation effects of the surface reflectance were corrected to calculate the magnitude of the soil dielectric constant. Second, based on the improved Dobson-S soil dielectric constant model as the physical model and the Soil Moisture Active Passive Mission (SMAP) soil moisture product as the main auxiliary data, a set of soil salinity retrieval methods was constructed to complete the soil salinity estimation in the Yellow River Delta High-efficiency Ecological Economic Zone in May 2020. Finally, the result was verified by the groundmeasured conductivity value. It was found that the soil salinity retrieved from the CYGNSS data correlated well with the ground-measured conductivity, with a coefficient of determination (R~2) equal to 0.88 and a Root Mean Squared Error (RMSE) equal to 1.06 mS/cm. Therefore, a high-precision soil salinization map of the Yellow River Delta was made by kriging interpolation based on the estimation result, which showed an obvious trend that soil salinity decreased gradually from coastal to inland at the regional scale with a strong spatial heterogeneity itself. In this paper, a physical model for soil salinity estimation based on the bistatic radar equation and dielectric constant model was proposed using CYGNSS as the main data source. The results of this study indicated that it is feasible to use CYGNSS to estimate soil salinity and proved the sensitivity of the L-band to soil salinity, providing a new idea for soil salinity retrieval on a regional scale. In future studies, the method of multisource data fusion can be considered to transform the estimation results from point data to planar area for expression, and a new validation method of high precision is needed due to the strong spatial heterogeneity of soil salinity.
来源 遥感学报 ,2023,27(2):351-362 【核心库】
DOI 10.11834/jrs.20210466
关键词 遥感 ; 土壤盐分 ; CYGNSS ; 双基雷达方程 ; 介电常数 ; 黄河三角洲
地址

1. 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室, 北京, 100101  

2. 中国科学院大学资源与环境学院, 北京, 100190  

3. 中国科学院地理科学与资源研究所, 中国科学院黄河三角洲现代农业工程实验室, 北京, 100101  

4. 中科山东东营地理研究院, 东营, 257000  

5. 中国农业大学资源与环境学院, 北京, 100193  

6. 天津中科无人机应用研究院, 天津, 301800

语种 中文
文献类型 研究性论文
ISSN 1007-4619
学科 测绘学
基金 中国科学院A类战略性先导科技专项 ;  中国科学院重点部署项目 ;  国家重点研发计划课题 ;  天津市智能制造专项项目
文献收藏号 CSCD:7421385

参考文献 共 44 共3页

1.  Aldabaa A A A. Combination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma,2015,239/240:34-46 CSCD被引 22    
2.  Allbed A. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: applications in a date palm dominated region. Geoderma,2014,230/231:1-8 CSCD被引 87    
3.  白春礼. 科技创新引领黄河三角洲农业高质量发展. 中国科学院院刊,2020,35(2):137-144 CSCD被引 1    
4.  Bell D. The application of dielectric retrieval algorithms for mapping soil salinity in a tropical coastal environment using airborne polarimetric SAR. Remote Sensing of Environment,2001,75(3):375-384 CSCD被引 4    
5.  Calabia A. Soil moisture content from GNSS reflectometry using dielectric permittivity from Fresnel reflection coefficients. Remote Sensing,2020,12(1):122 CSCD被引 6    
6.  Camps A. Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,9(10):4730-4742 CSCD被引 20    
7.  Camps A. Sensitivity of TDS-1 GNSS-R reflectivity to soil moisture: global and regional differences and impact of different spatial scales. Remote Sensing,2018,10(11):1856 CSCD被引 5    
8.  Chen Q. Soil moisture retrieval from SMAP: a validation and error analysis study using Ground-Based observations over the little Washita watershed. IEEE Transactions on Geoscience and Remote Sensing,2018,56(3):1394-1408 CSCD被引 4    
9.  Chew C. Description of the UCAR/CU soil moisture product. Remote Sensing,2020,12(10):1558 CSCD被引 15    
10.  Chew C C. Soil moisture sensing using spaceborne GNSS reflections: comparison of CYGNSS reflectivity to SMAP soil moisture. Geophysical Research Letters,2018,45(9):4049-4057 CSCD被引 25    
11.  Clarizia M P. Analysis of CYGNSS data for soil moisture retrieval. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2019,12(7):2227-2235 CSCD被引 17    
12.  Crespo J A. CYGNSS surface heat flux product development. Remote Sensing,2019,11(19):2294 CSCD被引 1    
13.  Cui C Y. Soil moisture mapping from satellites: an intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales. Remote Sensing,2018,10(1):33 CSCD被引 16    
14.  Dobson M C. Microwave dielectric behavior of wet soil-part II: dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing,1985,23(1):35-46 CSCD被引 158    
15.  Eroglu O. High spatiotemporal resolution CYGNSS soil moisture estimates using artificial neural networks. Remote Sensing,2019,11(19):2272 CSCD被引 13    
16.  Fischer G. Global Agro-Ecological Zones Assessment for Agriculture (GAEZ 2008),2008 CSCD被引 36    
17.  侯贺贺. 黄河三角洲盐碱地生物措施改良效果研究. 中国农村水利水电,2014(7):1-6 CSCD被引 9    
18.  胡庆荣. 含水含盐土壤介电特性实验研究及对雷达图像的响应分析,2003 CSCD被引 19    
19.  Jensen K. Assessing L-Band GNSS-Reflectometry and imaging radar for detecting Sub-Canopy inundation dynamics in a tropical wetlands complex. Remote Sensing,2018,10(9):1431 CSCD被引 4    
20.  Morris M. Estimating tropical cyclone integrated kinetic energy with the CYGNSS satellite constellation. Journal of Applied Meteorology and Climatology,2017,56(1):235-245 CSCD被引 4    
引证文献 2

1 刘晶晖 CYGNSS 3种地表反射率在贵州山区的土壤湿度反演对比 测绘科学,2024,49(5):143-153
CSCD被引 0 次

2 王敬哲 基于星地传感技术的土壤盐渍化监测进展与展望 遥感学报,2024,28(9):2187-2208
CSCD被引 1

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号