面向慕课学习者评估的认知反应模型
Cognitive and Response Model for Evaluation of MOOC Learners
查看参考文献18篇
文摘
|
认知诊断模型从学习者的认知结构出发,建模学习者与试题之间的潜在关系,结合智能算法并根据试题作答结果可评估学习者的知识水平.大多数认知诊断模型是将学习者的高阶能力特征视为单维,忽视了后天努力的影响.为此,本文提出了一种考虑能力特征与努力特征相互补偿的具有二维高阶特征的新认知诊断模型——认知反应模型(Cognitive and Response Model,C&RM).该模型通过设置能力特征与努力特征相互补偿机制来融合两高阶特征参数以精准建模学习者的知识水平.同时,还构建了知识点弱项特征参数,以综合考虑学习者的知识水平与不同知识点对作答试题的影响,进一步提高模型的解释性和预测精度.采用自建的HNU_SYS数据集和Math1,Math2,FrcSub公共数据集,通过实验对比分析了C&RM模型、最新的认知诊断模型和经典诊断模型.当数据训练集为70%最佳比例时,C&RM在4个数据集上分别比次优方法提升了6.3%,4.3%,3.3%,5.2%,其预测性能最佳,验证了本文模型的可行性和有效性. |
其他语种文摘
|
The cognitive diagnosis model starts from the learner's cognitive structure,models the potential relationship between the learner and the test questions,and combines intelligent algorithms to evaluate the learner's knowledge level according to the results of the test questions.Most cognitive diagnostic models treat learners' higher-order ability characteristics as a single dimension,ignoring the effect of acquired effort.To this end,this paper proposes a cognitive diagnostic model with two-dimensional high-order features that considers the mutual compensation of ability and effort features-cognitive and response model (C&RM).The model integrates two high-order feature parameters by setting the mutual compensation mechanism of ability feature and effort feature to accurately model the knowledge level of the learner.At the same time,the characteristic parameters of knowledge point weaknesses are also constructed to comprehensively consider the knowledge point level of learners and the influence of different knowledge points on answering questions,and further improve the interpretability and prediction accuracy of the model.Using the self-built HNU_SYS data set and the Math1,Math2,FrcSub public data sets,the C&RM model,the latest cognitive diagnostic model and the classic diagnostic model are compared and analyzed through experiments.When the data training set is at the best ratio of 70%,C&RM is improved by 6.3%,4.3%,3.3%,and 5.2% on the four data sets,respectively,and its prediction performance is the best,which verifies the feasibility of the model in this paper. |
来源
|
电子学报
,2023,51(1):18-25 【核心库】
|
DOI
|
10.12263/DZXB.20211580
|
关键词
|
认知诊断
;
认知反应模型
;
评估
;
慕课
;
补偿机制
|
地址
|
1.
湖南大学电气与信息工程学院, 湖南, 长沙, 410082
2.
中国农业银行研发中心, 天津, 300392
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家重点研发计划
;
中国高等教育学会数字化课程资源专项研究课题
|
文献收藏号
|
CSCD:7419775
|
参考文献 共
18
共1页
|
1.
祝智庭. 教育信息化2.0:智能教育启程,智慧教育领航.
电化教育研究,2018,39(9):5-16
|
CSCD被引
5
次
|
|
|
|
2.
朱天宇. 基于认知诊断的个性化试题推荐方法.
计算机学报,2017,40(1):176-191
|
CSCD被引
27
次
|
|
|
|
3.
王超. 面向大规模认知诊断的DINA模型快速计算方法研究.
电子学报,2018,46(5):1047-1055
|
CSCD被引
5
次
|
|
|
|
4.
Liu H. Pedagogical strategy model in adaptive learning system focusing on learning styles.
International Conference on Technologies for E-Learning and Digital Entertainment,2010:156-164
|
CSCD被引
1
次
|
|
|
|
5.
Fan X. Item response theory and classical test theory: An empirical comparison of their item/person statistics.
Educational & Psychological Measurement,1998,58(3):357-381
|
CSCD被引
13
次
|
|
|
|
6.
De La Torre J. DINA model and parameter estimation: A didactic.
Journal of Educational and Behavioral Statistics,2009,34(1):115-130
|
CSCD被引
70
次
|
|
|
|
7.
Hartz M C. A Bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality.
American Journal of Gastroenterology,2002,95(4):906-909
|
CSCD被引
2
次
|
|
|
|
8.
Leighton J P. The attribute hierarchy method for cognitive assessment: A variation on Tatsuoka's rule-space approach.
Journal of Educational Measurement,2004,41(3):205-237
|
CSCD被引
73
次
|
|
|
|
9.
李忧喜. 一种改进的模糊认知诊断模型.
数据采集与处理,2017,32(5):958-969
|
CSCD被引
2
次
|
|
|
|
10.
Zhan P. Probabilistic-input, noisy conjunctive models for cognitive diagnosis.
Frontiers in Psychology,2018,9:997-1002
|
CSCD被引
2
次
|
|
|
|
11.
Zhan P. A sequential higher order latent structural model for hierarchical attributes in cognitive diagnostic assessments.
Applied Psychological Measurement,2020,44(1):65-83
|
CSCD被引
1
次
|
|
|
|
12.
Torre J. Higher-order latent trait models for cognitive diagnosis.
Psychometrika,2004,69(3):333-353
|
CSCD被引
56
次
|
|
|
|
13.
Liu Q. Fuzzy cognitive diagnosis for modelling examinee performance.
ACM Transactions on Intelligent Systems and Technology,2018,9(4):1-26
|
CSCD被引
18
次
|
|
|
|
14.
De L. Simultaneous estimation of overall and domain abilities: A higher-order IRT model approach.
Applied Psychological Measurement,2009,33(8):620-639
|
CSCD被引
8
次
|
|
|
|
15.
Wang F. Neural cognitive diagnosis for intelligent education systems.
Proceedings of the AAAI Conference on Artificial Intelligence,2020:6153-6161
|
CSCD被引
4
次
|
|
|
|
16.
Chen J. Research on cognitive diagnostic model based on BP neural network.
2019 4th International Conference on Measurement, Information and Control (ICMIC),2019:61-65
|
CSCD被引
1
次
|
|
|
|
17.
Pardos Z A. The composition effect: Conjuntive or compensatory? An analysis of multi-skill math questions in ITS.
International Conference Educational Data Mining,2008:147-156
|
CSCD被引
1
次
|
|
|
|
18.
Gelfand A E. Illustration of Bayesian inference in normal data models using Gibbs sampling.
Journal of the American Statistical Association,1990,85(412):972-985
|
CSCD被引
8
次
|
|
|
|
|